基于颞骨CT的深度迁移学习放射组学模型辅助鉴别内耳畸形

赵星, 李晓鸽, 高坤, 等. 基于颞骨CT的深度迁移学习放射组学模型辅助鉴别内耳畸形[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(6): 547-552. doi: 10.13201/j.issn.2096-7993.2024.06.017
引用本文: 赵星, 李晓鸽, 高坤, 等. 基于颞骨CT的深度迁移学习放射组学模型辅助鉴别内耳畸形[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(6): 547-552. doi: 10.13201/j.issn.2096-7993.2024.06.017
ZHAO Xing, LI Xiaoge, GAO Kun, et al. Deep transfer learning radiomics model based on temporal bone CT for assisting in the diagnosis of inner ear malformations[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(6): 547-552. doi: 10.13201/j.issn.2096-7993.2024.06.017
Citation: ZHAO Xing, LI Xiaoge, GAO Kun, et al. Deep transfer learning radiomics model based on temporal bone CT for assisting in the diagnosis of inner ear malformations[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(6): 547-552. doi: 10.13201/j.issn.2096-7993.2024.06.017

基于颞骨CT的深度迁移学习放射组学模型辅助鉴别内耳畸形

  • 基金项目:
    国家重点研发计划项目(No:2022YFC2703602);国家自然科学基金资助项目(No:61827805)
详细信息

Deep transfer learning radiomics model based on temporal bone CT for assisting in the diagnosis of inner ear malformations

More Information
  • 目的 评估传统放射组学、深度学习以及深度学习放射组学特征融合模型在颞骨计算机断层扫描(CT)上诊断内耳畸形的效能。方法 回顾性收集572耳颞骨CT数据,其中包含201耳畸形内耳和371耳正常内耳,按照4∶1的比例将其随机分为训练集(n=458)和测试集(n=114)。从上述颞骨CT图像中提取深度迁移学习特征和放射组学特征,并进行特征融合。以来自国家耳鼻咽喉疾病临床研究中心的2名耳科主任医师的CT判读结果作为诊断标准。使用受试者工作特征曲线(ROC)评估模型性能,计算模型的准确率、灵敏度、特异度等指标,并使用德龙检验比较模型的预测能力。结果 从传统放射组学中获得1 179个放射组学特征,从深度学习中获得2 048个深度学习特征,在对两者进行特征筛选和融合后获得137个融合特征。深度学习放射组学特征融合模型在测试集上的AUC为0.964 0(95%CI 0.931 4~0.996 8),准确率为0.922,灵敏度为0.881、特异度为0.945。单纯放射组学特征在测试集上的AUC为0.929 0(95%CI0.882 2~0.974 9),准确率为0.878,灵敏度为0.881,特异度为0.877。深度学习特征在测试集上的AUC为0.947 0(95%CI 0.898 2~0.994 8),准确率为0.913,灵敏度为0.810,特异度为0.973。即深度学习放射组学特征融合模型的预测准确率和AUC均最高。德龙检验表明,任何2种模型之间的差异均无统计学意义。结论 特征融合模型可用于正常和内耳畸形的鉴别诊断,与单独使用放射组学或深度学习模型相比,其诊断效能有所提高。
  • 加载中
  • 图 1  耳蜗图像的手动标注用于放射学分析

    图 2  所有放射组学特征及对应P

    图 3  使用Lasso回归进行特征选择

    图 4  测试集中各种预测模型的AUC

    图 5  颞骨CT内耳影像举例

    表 1  训练集和验证集的患者基线特征 

    基线特征 训练集(n=458) 测试集(n=114) P
    年龄/岁a 20(3,42) 23(2,41) 0.856
    女/男 229/229 52/62 0.464
    左侧/右侧 226/232 59/55 0.676
    内耳畸形/正常数量 157/301 44/70 0.383
    a数据为CT检查时年龄的中位数。
    下载: 导出CSV

    表 2  不同模型在测试集上的诊断效能

    模型 准确率 AUC 95%CI 灵敏度 特异度 阳性预测值 阴性预测值 F1得分
    放射组学 0.878 0.929 0.882 2~0.974 9 0.881 0.877 0.804 0.928 0.841
    深度学习 0.913 0.947 0.898 2~0.994 8 0.810 0.973 0.944 0.899 0.872
    特征融合 0.922 0.964 0.931 4~0.996 8 0.881 0.945 0.902 0.932 0.892
    下载: 导出CSV
  • [1]

    Mafong DD, Shin EJ, Lalwani AK. Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss[J]. Laryngoscope, 2002, 112(1): 1-7. doi: 10.1097/00005537-200201000-00001

    [2]

    Feraco P, Piccinini S, Gagliardo C. Imaging of inner ear malformations: a primer for radiologists[J]. La Radiol Med, 2021, 126(10): 1282-1295. doi: 10.1007/s11547-021-01387-z

    [3]

    Sennaro lu L, Bajin MD. Classification and current management of inner ear malformations[J]. Balkan Med J, 2017, 34(5): 397-411. doi: 10.4274/balkanmedj.2017.0367

    [4]

    Chee CG, Yoon MA, Kim KW, et al. Combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT[J]. Eur Radiol, 2021, 31(9): 6825-6834. doi: 10.1007/s00330-021-07832-x

    [5]

    Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. doi: 10.1148/radiol.2020191145

    [6]

    Li J, Dong D, Fang MJ, et al. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer[J]. Eur Radiol, 2020, 30(4): 2324-2333. doi: 10.1007/s00330-019-06621-x

    [7]

    中华医学会放射学分会头颈学组. 眼部CT和MRI检查及诊断专家共识[J]. 中华放射学杂志, 2017, 51(9): 648-653.

    [8]

    Wang W, Peng Y, Feng XY, et al. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer[J]. JAMA Netw Open, 2021, 4(8): e2121143. doi: 10.1001/jamanetworkopen.2021.21143

    [9]

    Arendt CT, Leithner D, Mayerhoefer ME, et al. Radiomics of high-resolution computed tomography for the differentiation between cholesteatoma and middle ear inflammation: effects of post-reconstruction methods in a dual-center study[J]. Eur Radiol, 2021, 31(6): 4071-4078. doi: 10.1007/s00330-020-07564-4

    [10]

    王美玲, 朱继庆, 李莹, 等. 基于卷积神经网络的喉镜图像解剖部位自动识别的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(1): 6-12. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.01.002

    [11]

    王路, 罗泽斌, 倪健慧, 等. 基于U-Net网络的儿童腺样体及鼻咽气道图像分割[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(8): 632-636, 641. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.08.006

    [12]

    Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images[J]. Comput Methods Programs Biomed, 2019, 171: 27-37. doi: 10.1016/j.cmpb.2019.02.006

    [13]

    Liu B, Chi WH, Li XR, et al. Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: three decades' development course and future prospect[J]. J Cancer Res Clin Oncol, 2020, 146(1): 153-185. doi: 10.1007/s00432-019-03098-5

    [14]

    Cha KH, Hadjiiski L, Chan HP, et al. Bladder cancer treatment response assessment in CT using radiomics with deep-learning[J]. Sci Rep, 2017, 7(1): 8738. doi: 10.1038/s41598-017-09315-w

    [15]

    Nassiri N, Maas M, Cacciamani G, et al. A radiomic-based machine learning algorithm to reliably differentiate benign renal masses from renal cell carcinoma[J]. Eur Urol Focus, 2022, 8(4): 988-994. doi: 10.1016/j.euf.2021.09.004

    [16]

    Zhang J, Liu JY, Liang ZP, et al. Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features[J]. BMC Musculoskelet Disord, 2023, 24(1): 165. doi: 10.1186/s12891-023-06281-5

    [17]

    Li ZH, Zhou LT, Bin X, et al. Utility of deep learning for the diagnosis of cochlear malformation on temporal bone CT[J]. Jpn J Radiol, 2024, 42(3): 261-267. doi: 10.1007/s11604-023-01494-z

    [18]

    Guo YC, He YW, Lyu JH, et al. Deep learning with weak annotation from diagnosis reports for detection of multiple head disorders: a prospective, multicentre study[J]. Lancet Digit Health, 2022, 4(8): e584-e593. doi: 10.1016/S2589-7500(22)00090-5

    [19]

    Albahli S, Albattah W. Deep transfer learning for COVID-19 prediction: case study for limited data problems[J]. Curr Med Imaging, 2021, 17(8): 973-980. doi: 10.2174/1573405616666201123120417

    [20]

    Albahli S, Albattah W. Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms[J]. J Xray Sci Technol, 2020, 28(5): 841-850.

  • 加载中
WeChat 点击查看大图
计量
  • 文章访问数:  98
  • 施引文献:  0
出版历程
收稿日期:  2024-02-19
刊出日期:  2024-06-03

返回顶部

目录