儿童颜面管理与人工智能

关舒文, 刘殿全, 张庆丰. 儿童颜面管理与人工智能[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(8): 658-661. doi: 10.13201/j.issn.2096-7993.2023.08.012
引用本文: 关舒文, 刘殿全, 张庆丰. 儿童颜面管理与人工智能[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(8): 658-661. doi: 10.13201/j.issn.2096-7993.2023.08.012
GUAN Shuwen, LIU Dianquan, ZHANG Qingfeng. Pediatric oral maxillofacial management and artificial intelligence[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(8): 658-661. doi: 10.13201/j.issn.2096-7993.2023.08.012
Citation: GUAN Shuwen, LIU Dianquan, ZHANG Qingfeng. Pediatric oral maxillofacial management and artificial intelligence[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(8): 658-661. doi: 10.13201/j.issn.2096-7993.2023.08.012

儿童颜面管理与人工智能

  • 基金项目:
    深圳市“医疗卫生三名工程”项目(No:SZSM202003003);深圳市科技计划资助(No:JCYJ20200109114244249)
详细信息

Pediatric oral maxillofacial management and artificial intelligence

More Information
  • 随着人们对儿童颜面发育美学意识的增强,儿童颜面管理受到多学科医生的重视,人工智能技术因其在医学识别、辅助决策等方面展现的突出优势,已被逐渐应用至儿童颜面管理各个领域。本文就目前人工智能技术在儿童颜面管理的筛查、诊断、治疗、随访中的应用进行文献综述。
  • 加载中
  • [1]

    张虹, 李晓明, 吴彦桥. 鼻气道阻塞与儿童颌面发育[J]. 国际耳鼻咽喉头颈外科杂志, 2007, 31(4): 241-242. doi: 10.3760/cma.j.issn.1673-4106.2007.04.017

    [2]

    张庆丰, 仝屹峰, 谷庆隆, 等. 小儿鼾症对颌面骨发育影响的初步观察[J]. 中华耳鼻咽喉头颈外科杂志, 2008, 43(12): 935-938. doi: 10.3321/j.issn:1673-0860.2008.12.014

    [3]

    Lin L, Zhao T, Qin D, et al. The impact of mouth breathing on dentofacial development: A concise review[J]. Front Public Health, 2022, 10: 929165. doi: 10.3389/fpubh.2022.929165

    [4]

    Proffit WR. Equilibrium theory revisited: factors influencing position of the teeth[J]. Angle Orthod, 1978, 48(3): 175-186.

    [5]

    Buschang PH, Roldan SI, Tadlock LP. Guidelines for assessing the growth and development of orthodontic patients[J]. Seminars in Orthodontics, 2017, 23(4): 321-335. doi: 10.1053/j.sodo.2017.07.001

    [6]

    王美玲, 朱继庆, 李莹, 等. 基于卷积神经网络的喉镜图像解剖部位自动识别的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(1): 6-12. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.01.002

    [7]

    Rattanalappaiboon S, Bhongmakapat T, Ritthipravat P. Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images[J]. Comput Biol Med, 2015, 67: 83-94. doi: 10.1016/j.compbiomed.2015.09.021

    [8]

    Das AJ, Valdez TA, Vargas JA, et al. Volume estimation of tonsil phantoms using an oral camera with 3D imaging[J]. Biomed Opt Express, 2016, 7(4): 1445-1457. doi: 10.1364/BOE.7.001445

    [9]

    Tran TT, Fang TY, Pham VT, et al. Development of an Automatic Diagnostic Algorithm for Pediatric Otitis Media[J]. Otol Neurotol, 2018, 39(8): 1060-1065. doi: 10.1097/MAO.0000000000001897

    [10]

    Malizia V, Cilluffo G, Fasola S, et al. Endotyping allergic rhinitis in children: A machine learning approach[J]. Pediatr Allergy Immunol, 2022, 33 Suppl 27(Suppl 27): 18-21.

    [11]

    Kournoutas I, Vigo V, Chae R, et al. Acquisition of Volumetric Models of Skull Base Anatomy Using Endoscopic Endonasal Approaches: 3D Scanning of Deep Corridors Via Photogrammetry[J]. World Neurosurg, 2019, 129: 372-377. doi: 10.1016/j.wneu.2019.05.251

    [12]

    Zhao T, Zhou J, Yan J, et al. Automated Adenoid Hypertrophy Assessment with Lateral Cephalometry in Children Based on Artificial Intelligence[J]. Diagnostics(Basel), 2021, 11(8): 1386.

    [13]

    Park S, Lee SM, Kim W, et al. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction[J]. Radiology, 2021, 299(1): 211-219. doi: 10.1148/radiol.2021203387

    [14]

    Minnema J, Ernst A, van Eijnatten M, et al. A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery[J]. Dentomaxillofac Radiol, 2022, 51(7): 20210437. doi: 10.1259/dmfr.20210437

    [15]

    Witt DR, Chen H, Mielens JD, et al. Detection of chronic laryngitis due to laryngopharyngeal reflux using color and texture analysis of laryngoscopic images[J]. J Voice, 2014, 28(1): 98-105. doi: 10.1016/j.jvoice.2013.08.015

    [16]

    Djanian S, Bruun A, Nielsen TD. Sleep classification using Consumer Sleep Technologies and AI: A review of the current landscape[J]. Sleep Med, 2022, 100: 390-403. doi: 10.1016/j.sleep.2022.09.004

    [17]

    中国医师协会耳鼻咽喉头颈外科医师分会. 儿童扁桃体腺样体低温等离子射频消融术规范化治疗临床实践指南[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(3): 193-199. doi: 10.13201/j.issn.2096-7993.2021.03.001 https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2021.03.001

    [18]

    Ferrell JK, Roy S, Karni RJ, et al. Applications for transoral robotic surgery in the pediatric airway[J]. Laryngoscope, 2014, 124(11): 2630-2635. doi: 10.1002/lary.24753

    [19]

    Kayhan FT, Kaya KH, Koc AK, et al. Transoral surgery for an infant thyroglossal duct cyst[J]. Int J Pediatr Otorhinolaryngol, 2013, 77(9): 1620-1623. doi: 10.1016/j.ijporl.2013.07.007

    [20]

    Khan K, Dobbs T, Swan MC, et al. Trans-oral robotic cleft surgery(TORCS) for palate and posterior pharyngeal wall reconstruction: A feasibility study[J]. J Plast Reconstr Aesthet Surg, 2016, 69(1): 97-100. doi: 10.1016/j.bjps.2015.08.020

    [21]

    Bertoni D, Sterni LM, Pereira KD, et al. Predicting polysomnographic severity thresholds in children using machine learning[J]. Pediatr Res, 2020, 88(3): 404-411. doi: 10.1038/s41390-020-0944-0

    [22]

    Scarfe WC, Azevedo B, Toghyani S, et al. Cone Beam Computed Tomographic imaging in orthodontics[J]. Aust Dent J, 2017, 62 Suppl 1: 33-50.

    [23]

    Cheng E, Chen J, Yang J, et al. Automatic Dent-landmark detection in 3-D CBCT dental volumes[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2011, 2011: 6204-6207.

    [24]

    Shahidi S, Bahrampour E, Soltanimehr E, et al. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images[J]. BMC Med Imaging, 2014, 14: 32. doi: 10.1186/1471-2342-14-32

    [25]

    Montufar J, Romero M, Scougall-Vilchis RJ. Automatic 3-dimensional cephalometric landmarking based on active shape models in related projections[J]. Am J Orthod Dentofacial Orthop, 2018, 153(3): 449-458. doi: 10.1016/j.ajodo.2017.06.028

    [26]

    Montufar J, Romero M, Scougall-Vilchis RJ. Hybrid approach for automatic cephalometric landmark annotation on cone-beam computed tomography volumes[J]. Am J Orthod Dentofacial Orthop, 2018, 154(1): 140-150. doi: 10.1016/j.ajodo.2017.08.028

    [27]

    Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning[J]. Am J Orthod Dentofacial Orthop, 2016, 149(1): 127-133. doi: 10.1016/j.ajodo.2015.07.030

    [28]

    Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment[J]. Angle Orthod, 2010, 80(2): 262-266. doi: 10.2319/111608-588.1

    [29]

    Thanathornwong B. Bayesian-Based Decision Support System for Assessing the Needs for Orthodontic Treatment[J]. Healthc Inform Res, 2018, 24(1): 22-28. doi: 10.4258/hir.2018.24.1.22

    [30]

    Kunz F, Stellzig-Eisenhauer A, Zeman F, et al. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network[J]. J Orofac Orthop, 2020, 81(1): 52-68. doi: 10.1007/s00056-019-00203-8

    [31]

    Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part Ⅰ[J]. Am J Orthod Dentofacial Orthop, 1993, 103(4): 299-312. doi: 10.1016/0889-5406(93)70010-L

    [32]

    Choi HI, Jung SK, Baek SH, et al. Artificial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery[J]. J Craniofac Surg, 2019, 30(7): 1986-1989. doi: 10.1097/SCS.0000000000005650

    [33]

    Tomita Y, Uechi J, Konno M, et al. Accuracy of digital models generated by conventional impression/plaster-model methods and intraoral scanning[J]. Dent Mater J, 2018, 37(4): 628-633. doi: 10.4012/dmj.2017-208

    [34]

    Lian C, Wang L, Wu TH, et al. Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners[J]. IEEE Trans Med Imaging, 2020, 39(7): 2440-2450. doi: 10.1109/TMI.2020.2971730

    [35]

    Zanjani FG, Moin DA, Verheij B, et al. Deep Learning Approach to Semantic Segmentation in 3D Point Cloud Intra-oral Scans of Teeth[C]. Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning, 2019: 557-571.

    [36]

    Knoops P, Papaioannou A, Borghi A, et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery[J]. Sci Rep, 2019, 9(1): 13597. doi: 10.1038/s41598-019-49506-1

    [37]

    Hung K, Yeung A, Tanaka R, et al. Current Applications, Opportunities, and Limitations of AI for 3D Imaging in Dental Research and Practice[J]. Int J Environ Res Public Health, 2020, 17(12): 4424. doi: 10.3390/ijerph17124424

    [38]

    Hung K, Montalvao C, Tanaka R, et al. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review[J]. Dentomaxillofac Radiol, 2020, 49(1): 20190107. doi: 10.1259/dmfr.20190107

  • 加载中
计量
  • 文章访问数:  873
  • PDF下载数:  257
  • 施引文献:  0
出版历程
收稿日期:  2023-06-07
刊出日期:  2023-08-03

目录