数字化技术与儿童颜面管理

陈李清, 李岩, 吕佳牧, 等. 数字化技术与儿童颜面管理[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(8): 662-666. doi: 10.13201/j.issn.2096-7993.2023.08.013
引用本文: 陈李清, 李岩, 吕佳牧, 等. 数字化技术与儿童颜面管理[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(8): 662-666. doi: 10.13201/j.issn.2096-7993.2023.08.013
CHEN Liqing, LI Yan, LV Jiamu, et al. Digital technology and children's maxillofacial management[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(8): 662-666. doi: 10.13201/j.issn.2096-7993.2023.08.013
Citation: CHEN Liqing, LI Yan, LV Jiamu, et al. Digital technology and children's maxillofacial management[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(8): 662-666. doi: 10.13201/j.issn.2096-7993.2023.08.013

数字化技术与儿童颜面管理

  • 基金项目:
    深圳市“医疗卫生三名工程”项目(No:SZSM202003003);深圳市科技计划资助(No:JCYJ20200109114244249)
详细信息
    通讯作者: 张庆丰,E-mail:zxyyebh@163.com
  • 中图分类号: R766; R783.5

Digital technology and children's maxillofacial management

More Information
  • 颜面部具有呼吸、语言、面部表情等多项功能,其发育是一个复杂而漫长的过程,会受到遗传、疾病、不良习惯以及外伤等多种因素的影响。早发现、早诊断、早治疗是儿童颜面管理的重要理念。数字化技术医学是一门新兴技术,可为儿童颜面管理带来极大好处。本文就数字化技术在儿童颜面管理方面的研究进行综述,并聚焦于儿童阻塞性睡眠呼吸暂停、错畸形、唇腭裂等相关疾病研究并进行一综述。
  • 加载中
  • [1]

    Alsufyani NA, Flores-Mir C, Major PW. Three-dimensional segmentation of the upper airway using cone beam CT: a systematic review[J]. Dentomaxillofac Radiol, 2012, 41(4): 276-284. doi: 10.1259/dmfr/79433138

    [2]

    Zhang C, Bruggink R, Baan F, et al. A new segmentation algorithm for measuring CBCT images of nasal airway: a pilot study[J]. PeerJ, 2019, 7: e6246. doi: 10.7717/peerj.6246

    [3]

    Mupparapu M, Shi KJ, Lo AD, et al. Novel 3D segmentation for reliable volumetric assessment of the nasal airway: a CBCT study[J]. Quintessence Int, 2021, 52(2): 154-164.

    [4]

    Kamaruddin N, Daud F, Yusof A, et al. Comparison of automatic airway analysis function of Invivo5 and Romexis software[J]. Peer J, 2019, 7: e6319. doi: 10.7717/peerj.6319

    [5]

    Fonseca C, Cavadas F, Fonseca P. Upper Airway Assessment in Cone-Beam Computed Tomography for Screening of Obstructive Sleep Apnea Syndrome: Development of an Evaluation Protocol in Dentistry[J]. JMIR Res Protoc, 2023, 12: e41049. doi: 10.2196/41049

    [6]

    唐媛媛, 孙秀珍, 刘迎曦, 等, 腺样体肥大患儿上气道气流流场模型的建立与数值分析[J]. 中国耳鼻咽喉头颈外科, 2012, 19(3): 155-158. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT201203015.htm

    [7]

    王宏伟, 齐素青, 刘朝兵, 等, 腺样体肥大患者上气道计算流体动力学模型的构建及数值模拟[J]. 中华口腔医学杂志, 2023, 58(4): 337-344. doi: 10.3760/cma.j.cn112144-20221024-00556

    [8]

    Zhao T, Zhou J, Yan J, et al. Automated Adenoid Hypertrophy Assessment with Lateral Cephalometry in Children Based on Artificial Intelligence[J]. Diagnostics(Basel), 2021, 11(8): 1386.

    [9]

    Lam B, Ip MS, Tench E, et al. Craniofacial profile in Asian and white subjects with obstructive sleep apnoea[J]. Thorax, 2005, 60(6): 504-510. doi: 10.1136/thx.2004.031591

    [10]

    Tabatabaei Balaei A, Sutherland K, Cistulli P, et al. Prediction of obstructive sleep apnea using facial landmarks[J]. Physiol Meas, 2018, 39(9): 094004. doi: 10.1088/1361-6579/aadb35

    [11]

    Espinoza-Cuadros F, Fernández-Pozo R, Toledano DT, et al. Speech Signal and Facial Image Processing for Obstructive Sleep Apnea Assessment[J]. Comput Math MethodsMed, 2015, 2015: 489761.

    [12]

    Wang H, Xu W, Zhao A, et al. Clinical Characteristics Combined with Craniofacial Photographic Analysis in Children with Obstructive Sleep Apnea[J]. Nat Sci Sleep, 2023, 15: 115-125. doi: 10.2147/NSS.S400745

    [13]

    Kühlman DC, Almuzian M, Coppini C, et al. Accuracy(trueness and precision)of four tablet-based applications for three-dimensional facial scanning: An in-vitro study[J]. J Dent, 2023, 135: 104533. doi: 10.1016/j.jdent.2023.104533

    [14]

    Lin SW, Sutherland K, Liao YF, et al. Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea[J]. Respirology, 2018, 23(6): 618-625. doi: 10.1111/resp.13261

    [15]

    Ohmura K, Suzuki M, Soma M, et al. Predicting the presence and severity of obstructive sleep apnea based on mandibular measurements using quantitative analysis of facial profiles via three-dimensional photogrammetry[J]. Respir Investig, 2022, 60(2): 300-308. doi: 10.1016/j.resinv.2021.10.002

    [16]

    Eastwood P, Gilani SZ, McArdle N, et al. Predicting sleep apnea from three-dimensional face photography[J]. J Clin Sleep Med, 2020, 16(4): 493-502. doi: 10.5664/jcsm.8246

    [17]

    Banumathi A, Raju S, Abhaikumar V. Diagnosis of dental deformities in cephalometry images using support vector machine[J]. J Med Syst, 2011, 35(1): 113-119. doi: 10.1007/s10916-009-9347-9

    [18]

    Lee JH, Yu HJ, Kim MJ, et al. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks[J]. BMC Oral Health, 2020, 20(1): 270. doi: 10.1186/s12903-020-01256-7

    [19]

    Kim H, Shim E, Park J, et al. Web-based fully automated cephalometric analysis by deep learning[J]. Comput MethodsPrograms Biomed, 2020, 194: 105513.

    [20]

    Kim J, Kim I, Kim YJ, et al. Accuracy of automated identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from nationwide multi-centres[J]. Orthod Craniofac Res, 2021, 2: 59-67.

    [21]

    Schwendicke F, Chaurasia A, Arsiwala L, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25(7): 4299-4309. doi: 10.1007/s00784-021-03990-w

    [22]

    Sukun T, Ning D, Bei Z, et al. Automatic Classification and Segmentation of Teeth on 3D Dental Model Using Hierarchical Deep Learning Networks[J]. IEEE Access, 2019, 7: 84817-84828. doi: 10.1109/ACCESS.2019.2924262

    [23]

    Prasad J, Mallikarjunaiah DR, Shetty A, et al. Machine Learning Predictive Model as Clinical Decision Support System in Orthodontic Treatment Planning[J]. Dent J(Basel), 2022, 11(1): 1.

    [24]

    Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning[J]. Am J Orthod Dentofacial Orthop, 2016, 149(1): 127-133. doi: 10.1016/j.ajodo.2015.07.030

    [25]

    Thanathornwong B. Bayesian-Based Decision Support System for Assessing the Needs for Orthodontic Treatment[J]. Healthc Inform Res, 2018, 24(1): 22-28. doi: 10.4258/hir.2018.24.1.22

    [26]

    Suhail Y, Upadhyay M, Chhibber A, et al. Machine Learning for the Diagnosis of Orthodontic Extractions: A Computational Analysis Using Ensemble Learning[J]. Bioengineering(Basel), 2020, 7(2): 55.

    [27]

    AlAli AB, Griffin MF, Calonge WM, et al. Evaluating the Use of Cleft Lip and Palate 3D-Printed Models as a Teaching Aid[J]. J Surg Educ, 2018, 75(1): 200-208. doi: 10.1016/j.jsurg.2017.07.023

    [28]

    Levaillant JM, Nicot R, Benouaiche L, et al. Prenatal diagnosis of cleft lip/palate: The surface rendered oro-palatal(SROP)view of the fetal lips and palate, a tool to improve information-sharing within the orofacial team and with the parents[J]. J Craniomaxillofac Surg, 2016, 44(7): 835-842. doi: 10.1016/j.jcms.2016.04.006

    [29]

    Bous RM, Kochenour N, Valiathan M. A novel method for fabricating nasoalveolar molding appliances for infants with cleft lip and palate using 3-dimensional workflow and clear aligners[J]. Am J Orthod Dentofacial Orthop, 2020, 158(3): 452-458. doi: 10.1016/j.ajodo.2020.02.007

    [30]

    Wang Y, Zhang Z, Liu Y, et al. Virtual Surgical Planning Assisted Management for Cleft-Related Maxillary Hypoplasia[J]. J Craniofac Surg, 2019, 30(6): 1745-1749. doi: 10.1097/SCS.0000000000005603

    [31]

    Wang Y, Li J, Xu Y, et al. Accuracy of virtual surgical planning-assisted management for maxillary hypoplasia in adult patients with cleft lip and palate[J]. J Plast Reconstr Aesthet Surg, 2020, 73(1): 134-140. doi: 10.1016/j.bjps.2019.07.003

    [32]

    Choi YS, Shin HS. Preoperative Planning and Simulation in Patients With Cleft Palate Using Intraoral Three-Dimensional Scanning and Printing[J]. J Craniofac Surg, 2019, 30(7): 2245-2248. doi: 10.1097/SCS.0000000000005983

    [33]

    Pálházi P, Nemes B, Swennen G, et al. Three-dimensional simulation of the nasoalveolar cleft defect[J]. Cleft Palate Craniofac J, 2014, 51(5): 593-596. doi: 10.1597/13-041

    [34]

    Luo D, Li T, Wang H, et al. Three-Dimensional Printing of Personalized Nasal Stents for Patients With Cleft Lip[J]. Cleft Palate Craniofac J, 2019, 56(4): 521-524. doi: 10.1177/1055665618782804

    [35]

    Jung JW, Ha DH, Kim BY, et al. Nasal Reconstruction Using a Customized Three-Dimensional-Printed Stent for Congenital Arhinia: Three-Year Follow-up[J]. Laryngoscope, 2019, 129(3): 582-585. doi: 10.1002/lary.27335

    [36]

    Brézulier D, Chaigneau L, Jeanne S, et al. The Challenge of 3D Bioprinting of Composite Natural Polymers PLA/Bioglass: Trends and Benefits in Cleft Palate Surgery[J]. Biomedicines, 2021, 9(11): 1553. doi: 10.3390/biomedicines9111553

    [37]

    Ahn G, Lee JS, Yun WS, et al. Cleft Alveolus Reconstruction Using a Three-Dimensional Printed Bioresorbable Scaffold With Human Bone Marrow Cells[J]. J Craniofac Surg, 2018, 29(7): 1880-1883. doi: 10.1097/SCS.0000000000004747

    [38]

    Boyer CJ, Woerner JE, Galea C, et al. Personalized Bioactive Nasal Supports for Postoperative Cleft Rhinoplasty[J]. J Oral Maxillofac Surg, 2018, 76(7): 1562.e1-1562.

    [39]

    Chapman KL, Baylis A, Trost-Cardamone J, et al. The Americleft Speech Project: A Training and Reliability Study[J]. Cleft Palate Craniofac J, 2016, 53(1): 93-108. doi: 10.1597/14-027

    [40]

    郭毅波, 蔡鸣. 计算机科学应用于唇腭裂语音诊疗的研究进展[J]. 口腔疾病防治, 2022, 30(6): 453-456. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202206012.htm

    [41]

    Nakai Y, Takiguchi T, Matsui G, et al. Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders: Machine-Learning-Based Voice Analysis Versus Speech Therapists[J]. Percept Mot Skills, 2017, 124(5): 961-973.

    [42]

    Lee LM, Le HH, Jean FR. Improved model adaptation approach for recognition of reduced-frame-rate continuous speech[J]. PLoS One, 2018, 13(11): e0206916.

    [43]

    何凌, 何飞, 王熙月, 等. 基于多延迟四阶累积量倍频程谱线的腭裂语音咽擦音自动检测算法[J]. 计算机科学, 2020, 47(1): 144-152. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202001019.htm

    [44]

    付佳, 田婷, 唐铭, 等. 结合PECGTFs和SSMC的腭裂语音咽擦音自动检测算法[J]. 计算机工程与应用, 2019, 5(24): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201924016.htm

  • 加载中
计量
  • 文章访问数:  1073
  • PDF下载数:  257
  • 施引文献:  0
出版历程
收稿日期:  2023-06-10
刊出日期:  2023-08-03

目录