Der f 1/IGF-1纳米颗粒促进调节性T细胞生成的实验研究

马龙鹏, 罗向前, 莫丽华, 等. Der f 1/IGF-1纳米颗粒促进调节性T细胞生成的实验研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(4): 272-277. doi: 10.13201/j.issn.2096-7993.2023.04.007
引用本文: 马龙鹏, 罗向前, 莫丽华, 等. Der f 1/IGF-1纳米颗粒促进调节性T细胞生成的实验研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(4): 272-277. doi: 10.13201/j.issn.2096-7993.2023.04.007
MA Longpeng, LUO Xiangqian, MO Lihua, et al. Mechanism of Der f 1/IGF-1 nanoparticle promoting the production of regulatory T cell[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(4): 272-277. doi: 10.13201/j.issn.2096-7993.2023.04.007
Citation: MA Longpeng, LUO Xiangqian, MO Lihua, et al. Mechanism of Der f 1/IGF-1 nanoparticle promoting the production of regulatory T cell[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(4): 272-277. doi: 10.13201/j.issn.2096-7993.2023.04.007

Der f 1/IGF-1纳米颗粒促进调节性T细胞生成的实验研究

  • 基金项目:
    深圳市科技计划项目(No:JCYJ20220530154013030)
详细信息

Mechanism of Der f 1/IGF-1 nanoparticle promoting the production of regulatory T cell

More Information
  • 目的 旨在制备负载Der f 1/IGF-1的聚乳酸-乙醇酸共聚物(poly lactide-co-glycolide,PLGA)纳米颗粒(Der f 1/IGF-1 NPs),探讨其促进Treg细胞生成的作用。方法 通过复乳法制备包裹Der f 1/IGF-1的NPs并分析其理化性质及体外累计释放率;预处理BMDC将细胞分为Saline组、Blank NPs组、Der f 1/IGF-1组以及Der f 1/IGF-1 NPs组;利用ELISA实验测定IL-10及TGF-β的表达;采用流式细胞术检测Treg细胞的数量变化。结果 Der f 1/IGF-1 NPs为球形结构,具有良好的分散性,粒径均 < 200 nm,Zeta电位为负电荷且具有稳定的缓释效果;BMDC预处理后,相比较Blank NPs组,Der f 1/IGF-1 NPs组,BMDC细胞TGF-β、IL-10的表达水平明显增高,差异有统计学意义(P < 0.001);且与CD4+T细胞共培养后,Der f 1/IGF-1 NPs组Treg细胞生成的比例明显提高,差异有统计学意义(P < 0.001)。结论 Der f 1/IGF-1 NPs在体外实验中可诱导Treg细胞生成。本研究为重建免疫耐受功能失常提供了一种新的、更有效的方法。
  • 加载中
  • 图 1  投射电镜观察Der f 1/IGF-1 NPs的形貌特征

    图 2  Der f 1/IGF-1 NPs蛋白药物的累积释放率

    图 3  BMDC细胞中TGF-β的表达水平

    图 4  BMDC细胞中IL-10的表达水平

    图 5  Treg细胞生成的比例

    表 1  Blank NPs、Der f 1/IGF-1 NPs的理化性质

    纳米颗粒 粒径平均值/nm 多分散系数 Zeta电位(charge)/mV 包封率/%
    Blank NPs 123±15 0.14±0.02 -16.6±0.7 -
    Der f 1/IGF-1 NPs 135±20 0.23±0.06 -18.0±0.8 73.45±0.34
    下载: 导出CSV
  • [1]

    Nurmagambetov T, Kuwahara R, Garbe P. The Economic Burden of Asthma in the United States, 2008-2013[J]. Ann Am Thorac Soc, 2018, 15(3): 348-356. doi: 10.1513/AnnalsATS.201703-259OC

    [2]

    张启迪, 祝婉婷, 邹知欣, 等. 小鼠局部变应性鼻炎耐受模型的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(12): 944-950. doi: 10.13201/j.issn.2096-7993.2022.12.011 https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2022.12.011

    [3]

    Anderson MS, Su MA. AIRE expands: new roles in immune tolerance and beyond[J]. Nat Rev Immunol, 2016, 16(4): 247-258. doi: 10.1038/nri.2016.9

    [4]

    Wang Z, Liu X, Cao F, et al. Prospects of the Use of Cell Therapy to Induce Immune Tolerance[J]. Front Immunol, 2020, 11: 792. doi: 10.3389/fimmu.2020.00792

    [5]

    孔勇刚, 焦沃尔, 陶泽璋, 等. 变应原免疫治疗对变应性鼻炎的作用机制研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(12): 1149-1152. doi: 10.13201/j.issn.2096-7993.2021.12.021 https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2021.12.021

    [6]

    Ferreira LMR, Muller YD, Bluestone JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10): 749-769. doi: 10.1038/s41573-019-0041-4

    [7]

    Geng XR, Yang G, Li M, et al. Insulin-like growth factor-2 enhances functions of antigen(Ag)-specific regulatory B cells[J]. J Biol Chem, 2014, 289(25): 17941-17950. doi: 10.1074/jbc.M113.515262

    [8]

    Johannesson B, Sattler S, Semenova E, et al. Insulin-like growth factor-1 induces regulatory T cell-mediated suppression of allergic contact dermatitis in mice[J]. Dis Model Mech, 2014, 7(8): 977-985. doi: 10.1242/dmm.015362

    [9]

    吴婷, 徐聪, 孙岩. 胰岛素样生长因子-1对内耳保护机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(6): 572-576. doi: 10.13201/j.issn.2096-7993.2021.06.020 https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2021.06.020

    [10]

    Ye C, Chi H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges[J]. Mater Sci Eng C Mater Biol Appl, 2018, 83: 233-246. doi: 10.1016/j.msec.2017.10.003

    [11]

    Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems[J]. Asian Pac J Cancer Prev, 2014, 15(2): 517-535. doi: 10.7314/APJCP.2014.15.2.517

    [12]

    Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application[J]. Drug Deliv, 2021, 28(1): 1397-1418. doi: 10.1080/10717544.2021.1938756

    [13]

    Hajavi J, Ebrahimian M, Sankian M, et al. Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances[J]. J Biomed Mater Res A, 2018, 106(9): 2540-2551. doi: 10.1002/jbm.a.36423

    [14]

    Chintapula U, Yang S, Nguyen T, et al. Supramolecular Peptide Nanofiber/PLGA Nanocomposites for Enhancing Pulmonary Drug Delivery[J]. ACS Appl Mater Interfaces, 2022, 14(51): 56498-56509. doi: 10.1021/acsami.2c15204

    [15]

    Butreddy A, Gaddam RP, Kommineni N, et al. PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery[J]. Int J Mol Sci, 2021, 22(16): 8884. doi: 10.3390/ijms22168884

    [16]

    Han S, Wang W, Wang S, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics, 2021, 11(6): 2892-2916. doi: 10.7150/thno.50928

    [17]

    Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles[J]. Hum Vaccin Immunother, 2016, 12(3): 806-828. doi: 10.1080/21645515.2015.1102804

    [18]

    Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 1041-1060. doi: 10.1016/j.msec.2017.12.036

    [19]

    Dacoba TG, Olivera A, Torres D, et al. Modulating the immune system through nanotechnology[J]. Semin Immunol, 2017, 34: 78-102. doi: 10.1016/j.smim.2017.09.007

    [20]

    Ye C, Chi H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges[J]. Mater Sci Eng C Mater Biol Appl, 2018, 83: 233-246. doi: 10.1016/j.msec.2017.10.003

    [21]

    de Carvalho BG, Taketa TB, Garcia BBM, et al. Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarriers[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111467. doi: 10.1016/j.msec.2020.111467

    [22]

    Li Z, Ye E, David, et al. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery[J]. Small, 2016, 12(35): 4782-4806. doi: 10.1002/smll.201601129

    [23]

    Luo XQ, Zhong JW, Qiu SY, et al. A20-OVA Nanoparticles Inhibit Allergic Asthma in a Murine Model[J]. Inflammation, 2020, 43(3): 953-961. doi: 10.1007/s10753-020-01181-5

    [24]

    Fornaguera C, Dols-Perez A, Calderó G, et al. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier[J]. J Control Release, 2015, 211: 134-143. doi: 10.1016/j.jconrel.2015.06.002

    [25]

    Niyom Y, Phakkeeree T, Flood A, et al. Synergy between polymer crystallinity and nanoparticles size for payloads release[J]. J Colloid Interface Sci, 2019, 550: 139-146. doi: 10.1016/j.jcis.2019.04.085

    [26]

    Xiao X, Zeng X, Zhang X, et al. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma[J]. Int J Nanomedicine, 2013, 8: 4553-4562.

    [27]

    Ge RT, Mo LH, Wu R, et al. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine[J]. Sci Rep, 2015, 5: 7735. doi: 10.1038/srep07735

    [28]

    Yao Y, Chen CL, Yu D, et al. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy[J]. Allergy, 2021, 76(2): 456-470. doi: 10.1111/all.14639

    [29]

    Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24. doi: 10.1038/s41577-019-0210-z

    [30]

    Hong J, Xiao X, Gao Q, et al. Co-delivery of allergen epitope fragments and R848 inhibits food allergy by inducing tolerogenic dendritic cells and regulatory T cells[J]. Int J Nanomedicine, 2019, 14: 7053-7064. doi: 10.2147/IJN.S215415

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1186
  • PDF下载数:  305
  • 施引文献:  0
出版历程
收稿日期:  2023-02-24
刊出日期:  2023-04-03

目录