胰岛素样生长因子-1对内耳保护机制的研究进展

吴婷, 徐聪, 孙岩. 胰岛素样生长因子-1对内耳保护机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(6): 572-576. doi: 10.13201/j.issn.2096-7993.2021.06.020
引用本文: 吴婷, 徐聪, 孙岩. 胰岛素样生长因子-1对内耳保护机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(6): 572-576. doi: 10.13201/j.issn.2096-7993.2021.06.020
WU Ting, XU Cong, SUN Yan. Research progress on the protective mechanism of insulin like growth factor-1 on inner ear[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(6): 572-576. doi: 10.13201/j.issn.2096-7993.2021.06.020
Citation: WU Ting, XU Cong, SUN Yan. Research progress on the protective mechanism of insulin like growth factor-1 on inner ear[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(6): 572-576. doi: 10.13201/j.issn.2096-7993.2021.06.020

胰岛素样生长因子-1对内耳保护机制的研究进展

详细信息

Research progress on the protective mechanism of insulin like growth factor-1 on inner ear

More Information
  • 加载中
  • [1]

    Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical Practice Guideline: Sudden Hearing Loss(Update)[J]. Otolaryngol Head Neck Surg, 2019, 161(1_suppl): S1-s45. doi: 10.1177/0194599819859885

    [2]

    Yamahara K, Yamamoto N, Nakagawa T, et al. Insulin-like growth factor 1: A novel treatment for the protection or regeneration of cochlear hair cells[J]. Hear Res, 2015, 330(Pt A): 2-9.

    [3]

    Dieter A, Keppeler D, Moser T. Towards the optical cochlear implant: optogenetic approaches for hearing restoration[J]. EMBO Mol Med, 2020, 12(4): e11618.

    [4]

    Salt AN, Plontke SK. Steroid Nomenclature in Inner Ear Therapy[J]. Otol Neurotol, 2020, 41(6): 722-726. doi: 10.1097/MAO.0000000000002624

    [5]

    Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic Potential of Wnt and Notch Signaling and Epigenetic Regulation in Mammalian Sensory Hair Cell Regeneration[J]. Mol Ther, 2019, 27(5): 904-911. doi: 10.1016/j.ymthe.2019.03.017

    [6]

    Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss[J]. J Assoc Res Otolaryngol, 2017, 18(5): 649-670. doi: 10.1007/s10162-017-0634-8

    [7]

    Roccio M, Senn P, Heller S. Novel insights into inner ear development and regeneration for targeted hearing loss therapies[J]. Hear Res, 2020, 397: 107859. doi: 10.1016/j.heares.2019.107859

    [8]

    Liu W, Wang X, Wang M, et al. Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy[J]. Adv Exp Med Biol, 2019, 1130: 93-107.

    [9]

    Hayashi Y, Yamamoto N, Nakagawa T, et al. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice[J]. Mol Cell Neurosci, 2013, 56: 29-38. doi: 10.1016/j.mcn.2013.03.003

    [10]

    Yoshida S, Sugahara K, Hashimoto M, et al. The minimum peptides of IGF-1 and substance P protect vestibular hair cells against neomycin ototoxicity[J]. Acta Otolaryngol, 2015, 135(5): 411-415. doi: 10.3109/00016489.2014.979438

    [11]

    Kikkawa YS, Nakagawa T, Ying L, et al. Growth factor-eluting cochlear implant electrode: impact on residual auditory function, insertional trauma, and fibrosis[J]. J Transl Med, 2014, 12: 280. doi: 10.1186/s12967-014-0280-4

    [12]

    Lassale C, Batty GD, Steptoe A, et al. Insulin-like Growth Factor 1 in relation to future hearing impairment: findings from the English Longitudinal Study of Ageing[J]. Sci Rep, 2017, 7(1): 4212. doi: 10.1038/s41598-017-04526-7

    [13]

    Paulsen AJ, Cruickshanks KJ, Pinto A, et al. Neuroprotective factors and incident hearing impairment in the epidemiology of hearing loss study[J]. Laryngoscope, 2019, 129(9): 2178-2183. doi: 10.1002/lary.27847

    [14]

    陈英, 裴婷, 孙媛, 等. IGF-1与异型内类固醇激素注射治疗突发性聋合并2型糖尿病的新进展[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(6): 569-572. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202006022.htm

    [15]

    May LA, Kramarenko II, Brandon CS, et al. Inner ear supporting cells protect hair cells by secreting HSP70[J]. J Clin Invest, 2013, 123(8): 3577-3587. doi: 10.1172/JCI68480

    [16]

    Bramhall NF, Shi F, Arnold K, et al. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea[J]. Stem Cell Reports, 2014, 2(3): 311-322. doi: 10.1016/j.stemcr.2014.01.008

    [17]

    Shu Y, Li W, Huang M, et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells[J]. Nat Commun, 2019, 10(1): 5530. doi: 10.1038/s41467-019-13157-7

    [18]

    Zhang S, Zhang Y, Dong Y, et al. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea[J]. Cell Mol Life Sci, 2020, 77(7): 1401-1419. doi: 10.1007/s00018-019-03291-2

    [19]

    Zhang KD, Coate TM. Recent advances in the development and function of type Ⅱ spiral ganglion neurons in the mammalian inner ear[J]. Semin Cell Dev Biol, 2017, 65: 80-87. doi: 10.1016/j.semcdb.2016.09.017

    [20]

    Rathinam R, Ghosh S, Neumann WL, et al. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4[J]. Cell Death Discov, 2015, 1: 15052. doi: 10.1038/cddiscovery.2015.52

    [21]

    Liang Q, Shen N, Lai B, et al. Electrical Stimulation Degenerated Cochlear Synapses Through Oxidative Stress in Neonatal Cochlear Explants[J]. Front Neurosci, 2019, 13: 1073. doi: 10.3389/fnins.2019.01073

    [22]

    Wan G, Gómez-Casati ME, Gigliello AR, et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma[J]. Elife, 2014, 3: e03564. . doi: 10.7554/eLife.03564

    [23]

    Cevenini A, Orrù S, Mancini A, et al. Molecular Signatures of the Insulin-like Growth Factor 1-mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers[J]. Int J Mol Sci, 2018, 19(8): 2411. doi: 10.3390/ijms19082411

    [24]

    Su C, Wang W, Wang C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway[J]. Oncol Lett, 2018, 15(5): 7000-7006.

    [25]

    Chen Y, Fan Z, Wang X, et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J]. Stem Cell Res Ther, 2020, 11(1): 144. doi: 10.1186/s13287-020-01650-6

    [26]

    Liu L, Chen Y, Qi J, et al. Wnt activation protects against neomycin-induced hair cell damage in the mouse cochlea[J]. Cell Death Dis, 2016, 7(3): e2136. doi: 10.1038/cddis.2016.35

    [27]

    Liu W, Xu X, Fan Z, et al. Wnt Signaling Activates TP53-Induced Glycolysis and Apoptosis Regulator and Protects Against Cisplatin-Induced Spiral Ganglion Neuron Damage in the Mouse Cochlea[J]. Antioxid Redox Signal, 2019, 30(11): 1389-1410. doi: 10.1089/ars.2017.7288

    [28]

    Wang X, Han Y, Wang M, et al. Wnt Signaling Protects against Paclitaxel-Induced Spiral Ganglion Neuron Damage in the Mouse Cochlea In Vitro[J]. Biomed Res Int, 2019, 2019: 7878906.

    [29]

    Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation[J]. Front Immunol, 2016, 7: 378.

    [30]

    Gatsiou A, Vlachogiannis N, Lunella FF, et al. Adenosine-to-Inosine RNA Editing in Health and Disease[J]. Antioxid Redox Signal, 2018, 29(9): 846-863. doi: 10.1089/ars.2017.7295

    [31]

    Hayashi Y, Yamamoto N, Nakagawa T, et al. Activation of IGF1 Signaling in the Cochlea Induces the Transcription of Its Mediators During the Protection of Cochlear Hair Cells Against Aminoglycoside[J]. Otol Neurotol, 2017, 38(2): 278-282. doi: 10.1097/MAO.0000000000001276

    [32]

    Brand Y, Levano S, Radojevic V, et al. All Akt isoforms(Akt1, Akt2, Akt3) are involved in normal hearing, but only Akt2 and Akt3 are involved in auditory hair cell survival in the mammalian inner ear[J]. PLoS One, 2015, 10(3): e0121599. doi: 10.1371/journal.pone.0121599

    [33]

    Michanski S, Smaluch K, Steyer AM, et al. Mapping developmental maturation of inner hair cell ribbon synapses in the apical mouse cochlea[J]. Proc Natl Acad Sci U S A, 2019, 116(13): 6415-6424. doi: 10.1073/pnas.1812029116

    [34]

    Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses[J]. Cell Tissue Res, 2015, 361(1): 95-114. doi: 10.1007/s00441-014-2102-7

    [35]

    Zuccotti A, Kuhn S, Johnson SL, et al. Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss[J]. J Neurosci, 2012, 32(25): 8545-8553. doi: 10.1523/JNEUROSCI.1247-12.2012

    [36]

    Hayashi Y, Yamamoto N, Nakagawa T, et al. Insulin-like growth factor 1 induces the transcription of Gap43 and Ntn1 during hair cell protection in the neonatal murine cochlea[J]. Neurosci Lett, 2014, 560: 7-11. doi: 10.1016/j.neulet.2013.11.062

    [37]

    Yamahara K, Nakagawa T, Ito J, et al. Netrin 1 mediates protective effects exerted by insulin-like growth factor 1 on cochlear hair cells[J]. Neuropharmacology, 2017, 119: 26-39. doi: 10.1016/j.neuropharm.2017.03.032

    [38]

    王慧, 时海波. 噪声致听觉系统损害的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(8): 700-703. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201908005.htm

    [39]

    Rodríguez-de la Rosa L, Lassaletta L, Calvino M, et al. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss[J]. Front Aging Neurosci, 2017, 9: 411. doi: 10.3389/fnagi.2017.00411

    [40]

    Yamahara K, Asaka N, Kita T, et al. Insulin-like growth factor 1 promotes cochlear synapse regeneration after excitotoxic trauma in vitro[J]. Hear Res, 2019, 374: 5-12. doi: 10.1016/j.heares.2019.01.008

    [41]

    Li C, Li X, Bi Z, et al. Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages[J]. Elife, 2020, 9: e50491. doi: 10.7554/eLife.50491

    [42]

    O'Leary SJ, Monksfield P, Kel G, et al. Relations between cochlear histopathology and hearing loss in experimental cochlear implantation[J]. Hear Res, 2013, 298: 27-35. doi: 10.1016/j.heares.2013.01.012

    [43]

    Kopelovich JC, Reiss LA, Etler CP, et al. Hearing Loss After Activation of Hearing Preservation Cochlear Implants Might Be Related to Afferent Cochlear Innervation Injury[J]. Otol Neurotol, 2015, 36(6): 1035-1044. doi: 10.1097/MAO.0000000000000754

    [44]

    Eshraghi AA, Lang DM, Roell J, et al. Mechanisms of programmed cell death signaling in hair cells and support cells post-electrode insertion trauma[J]. Acta Otolaryngol, 2015, 135(4): 328-334. doi: 10.3109/00016489.2015.1012276

    [45]

    Jia H, François F, Bourien J, et al. Prevention of trauma-induced cochlear fibrosis using intracochlear application of anti-inflammatory and antiproliferative drugs[J]. Neuroscience, 2016, 316: 261-278. doi: 10.1016/j.neuroscience.2015.12.031

    [46]

    Yamahara K, Nishimura K, Ogita H, et al. Hearing preservation at low frequencies by insulin-like growth factor 1 in a guinea pig model of cochlear implantation[J]. Hear Res, 2018, 368: 92-108. doi: 10.1016/j.heares.2018.07.004

  • 加载中
计量
  • 文章访问数:  1033
  • PDF下载数:  316
  • 施引文献:  0
出版历程
收稿日期:  2020-06-30
刊出日期:  2021-06-05

目录