小鼠局部变应性鼻炎耐受模型的研究

张启迪, 祝婉婷, 邹知欣, 等. 小鼠局部变应性鼻炎耐受模型的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(12): 944-950. doi: 10.13201/j.issn.2096-7993.2022.12.011
引用本文: 张启迪, 祝婉婷, 邹知欣, 等. 小鼠局部变应性鼻炎耐受模型的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(12): 944-950. doi: 10.13201/j.issn.2096-7993.2022.12.011
ZHANG Qidi, ZHU Wanting, ZOU Zhixin, et al. Establishment of local allergic rhinitis tolerance in mouse model[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(12): 944-950. doi: 10.13201/j.issn.2096-7993.2022.12.011
Citation: ZHANG Qidi, ZHU Wanting, ZOU Zhixin, et al. Establishment of local allergic rhinitis tolerance in mouse model[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(12): 944-950. doi: 10.13201/j.issn.2096-7993.2022.12.011

小鼠局部变应性鼻炎耐受模型的研究

  • 基金项目:
    国家自然科学基金项目(No:81873693)
详细信息

Establishment of local allergic rhinitis tolerance in mouse model

More Information
  • 目的 通过鼻腔滴入过敏原建立小鼠局部变应性鼻炎动物耐受模型,并对其免疫学指标及特征进行研究。方法 使用卵清蛋白(OVA)和磷酸盐缓冲液(PBS)对小鼠每日局部滴鼻,记录过敏症状,检测小鼠血清OVA特异性抗体(IgE、IgG1、IgG2a)及脾脏细胞培养上清的细胞因子(IL-4、IL-10、IFN-γ)浓度,观察鼻黏膜嗜酸粒细胞及杯状细胞的浸润情况,用RNA-seq技术分析局部鼻黏膜基因的变化。结果 小鼠在OVA刺激下首先表现为过敏症状加重,血清OVA特异性抗体IgE、IgG1、IgG2a和体外培养脾细胞上清中IL-4、IFN-γ、IL-10升高,鼻黏膜嗜酸粒细胞和杯状细胞显著升高,鼻黏膜编码IL-10、TGF-β基因表达上调,嗜酸粒细胞活化基因上调。随着滴鼻时间继续延长,过敏症状逐渐减轻,血清OVA特异性抗体IgE、IgG1、IgG2a则持续增加,体外培养脾脏细胞上清IL-4下降,IL-10升高,IFN-γ有下降的趋势,鼻黏膜杯状细胞显著减少,嗜酸粒细胞活化基因显著下调,鼻黏膜编码IL-10、TGF-β等耐受基因维持高表达。筛选出10个与局部变应性鼻炎免疫耐受相关的核心基因:Rps27aUba52、Kng2、GnalC3、Rtp4、Reep1、Rtp2、Rtp1、Reep5。结论 通过局部持续滴入过敏原,可使小鼠先形成过敏,继而产生免疫耐受。这种免疫耐受的产生,可能是在变应原的持续作用下,诱导了全身及局部的免疫耐受效应。
  • 加载中
  • 图 1  小鼠局部AR耐受模型制备流程图

    图 2  脾细胞培养上清细胞因子变化

    图 3  各组鼻黏膜染色比较

    图 4  鼻黏膜差异基因表达

    表 1  各组小鼠喷嚏数量比较 个,X±S

    时间 过敏对照组 过敏实验组 耐受对照组 耐受实验组
    第0周 2.33±1.80 1.33±0.84 1.83±1.34 1.50±1.26
    第4周 2.17±0.9 9.25±2.862) 2.50±1.66 8.67±3.733)
    第7周 2.6±1.36 14.2±3.122) 1.60±1.62 14.80±3.123)
    第15周 - - 2.25±1.30 4.00±2.451)
    与第7周过敏实验组比较,1)P < 0.05;与过敏对照组比较,2)P < 0.01;与耐受对照组比较,3)P < 0.01。
    下载: 导出CSV

    表 2  各组小鼠OVA特异性血清抗体水平比较

    时间 过敏对照组 过敏实验组 耐受对照组 耐受实验组
    IgE
      第0周 0.14±0.04 0.13±0.04 0.06±0.01 0.11±0.05
      第4周 0.07±0.01 0.32±0.221) 0.14±0.04 0.28±0.152)
      第8周 0.03±0.00 0.55±0.301) 0.04±0.01 0.87±0.492)
      第15周 - - 0.04±0.02 1.61±0.332)3)
    IgG1
      第0周 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
      第4周 0.01±0.00 0.30±0.221) 0.02±0.00 0.34±0.142)
      第8周 0.01±0.00 0.70±0.261) 0.04±0.03 0.71±0.292)
      第15周 - - 0.05±0.04 1.61±0.232)3)
    IgG2a
      第0周 0.03±0.01 0.02±0.00 0.01±0.00 0.03±0.01
      第4周 0.02±0.00 0.18±0.131) 0.02±0.00 0.36±0.092)
      第8周 0.05±0.03 0.22±0.13 0.04±0.01 0.34±0.222)
      第15周 - - 0.08±0.05 0.92±0.412)3)
    与过敏对照组比较,1)P < 0.05;与耐受对照组比较,2)P < 0.05;与第8周过敏实验组比较,3)P < 0.05。
    下载: 导出CSV
  • [1]

    Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[J]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi: 10.1016/j.jaci.2017.03.050

    [2]

    Wang Y, Zhou Y, Zhu Y, et al. The Comparation of Intraperitoneal Injection and Nasal-only Delivery Allergic Rhinitis Model Challenged With Different Allergen Concentration[J]. Am J Rhinol Allergy, 2019, 33(2): 145-152. doi: 10.1177/1945892418817221

    [3]

    Durham SR, Emminger W, Kapp A, et al. SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial[J]. J Allergy Clin Immunol, 2012, 129(3): 717-725. e5. doi: 10.1016/j.jaci.2011.12.973

    [4]

    Akdis CA, Akdis M. Mechanisms of immune tolerance to allergens: role of IL-10 and Tregs[J]. J Clin Invest, 2014, 124(11): 4678-4680. doi: 10.1172/JCI78891

    [5]

    Soyer OU, Akdis M, Ring J, et al. Mechanisms of peripheral tolerance to allergens[J]. Allergy, 2013, 68(2): 161-170. doi: 10.1111/all.12085

    [6]

    Dunston D, Ashby S, Krosnowski K, et al. An effective manual deboning method to prepare intact mouse nasal tissue with preserved anatomical organization[J]. J Vis Exp, 2013, 78: 50538.

    [7]

    Santos MCP, Serra-Caetano A, Pedro E, et al. Expansion of FOXP3+ regulatory CD4 T cells upon exposure to hymenoptera venom during the beekeeping season[J]. Allergy, 2019, 74(6): 1182-1184. doi: 10.1111/all.13713

    [8]

    Jutel M, Brüggenjürgen B, Richter H, et al. Real-world evidence of subcutaneous allergoid immunotherapy in house dust mite-induced allergic rhinitis and asthma[J]. Allergy, 2020, 75(8): 2050-2058. doi: 10.1111/all.14240

    [9]

    Bo ek A, Kołodziejczyk K, Kozłowska R, et al. Evidence of the efficacy and safety of house dust mite subcutaneous immunotherapy in elderly allergic rhinitis patients: a randomized, double-blind placebo-controlled trial[J]. Clin Transl Allergy, 2017, 7: 43. doi: 10.1186/s13601-017-0180-9

    [10]

    Scadding GW, Calderon MA, Shamji MH, et al. Immune Tolerance Network GRASS Study Team. Effect of 2 Years of Treatment With Sublingual Grass Pollen Immunotherapy on Nasal Response to Allergen Challenge at 3 Years Among Patients With Moderate to Severe Seasonal Allergic Rhinitis: The GRASS Randomized Clinical Trial[J]. JAMA, 2017, 317(6): 615-625. doi: 10.1001/jama.2016.21040

    [11]

    Maeta A, Matsushima M, Katahira R, et al. Diets Supplemented with 1% Egg White Induce Oral Desensitization and Immune Tolerance in an Egg White-Specific Allergic Mouse Model[J]. Int Arch Allergy Immunol, 2018, 176(3/4): 205-214.

    [12]

    Gri G, Piconese S, Frossi B, et al. CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40 L interaction[J]. Immunity, 2008, 29(5): 771-781. doi: 10.1016/j.immuni.2008.08.018

    [13]

    Zeng Q, Zeng Y, Tang Y, et al. Effect of IL-35 on apoptosis, adhesion, migration, and activation of eosinophils in allergic rhinitis[J]. Pediatr Allergy Immunol, 2022, 33(2): e13717. http://onlinelibrary.wiley.com/doi/abs/10.1111/pai.13717

    [14]

    Lopez-Ramirez MA, Soto F, Wang C, et al. Built-In Active Microneedle Patch with Enhanced Autonomous Drug Delivery[J]. Adv Mater, 2020, 32(1): e1905740. doi: 10.1002/adma.201905740

    [15]

    van Neerven RJ, Wikborg T, Lund G, et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation[J]. J Immunol, 1999, 163(5): 2944-2952.

    [16]

    Radulovic S, Jacobson MR, Durham SR, et al. Grass pollen immunotherapy induces Foxp3-expressing CD4+ CD25+ cells in the nasal mucosa[J]. J Allergy Clin Immunol, 2008, 121(6): 1467-1472. doi: 10.1016/j.jaci.2008.03.013

    [17]

    Wachholz PA, Nouri-Aria KT, Wilson DR, et al. Grass pollen immunotherapy for hayfever is associated with increases in local nasal but not peripheral Th1: Th2 cytokine ratios[J]. Immunology, 2002, 105(1): 56-62. doi: 10.1046/j.1365-2567.2002.01338.x

    [18]

    Lilienthal GM, Rahmöller J, Petry J, et al. Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways[J]. Front Immunol, 2018, 9: 958. doi: 10.3389/fimmu.2018.00958

    [19]

    Brooks DG, Trifilo MJ, Edelmann KH, et al. Interleukin-10 determines viral clearance or persistence in vivo[J]. Nat Med, 2006, 12(11): 1301-1309. doi: 10.1038/nm1492

    [20]

    Nouri-Aria KT, Wachholz PA, Francis JN, et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity[J]. J Immunol, 2004, 172(5): 3252-3259. doi: 10.4049/jimmunol.172.5.3252

    [21]

    Okamura T, Sumitomo S, Morita K, et al. TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses[J]. Nat Commun, 2015, 19;6: 6329.

    [22]

    Fossati-Jimack L, Ling GS, Baudino L, et al. Intranasal peptide-induced tolerance and linked suppression: consequences of complement deficiency[J]. Immunology, 2015, 144(1): 149-157. doi: 10.1111/imm.12358

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1279
  • PDF下载数:  345
  • 施引文献:  0
出版历程
收稿日期:  2022-08-08
刊出日期:  2022-12-03

目录