Research progress of liposome drug delivery system in the treatment of head and neck cancer
-
摘要: 头颈肿瘤是危害人类健康的重大疾病之一,靶向化疗是针对头颈肿瘤的一项重要治疗手段。但是,许多抗癌药物难以在肿瘤中达到有效浓度,并会对正常组织造成损害。因此,如何高效递送抗肿瘤药物、提升其治疗效果并降低其对全身和局部的不良反应,是靶向药物研究中亟需解决的问题。脂质体因其独特的特性,包括两亲性,生物相容性,生物降解性,低毒性等,而受到了广泛研究。本文概述了近年来脂质体药物递送系统在头颈肿瘤不同治疗方式中的应用现状及前景,以期为头颈肿瘤的治疗提供更多可选方案。Abstract: Head and neck tumors are one of the major diseases that threaten human health. Targeted chemotherapy is an important treatment for head and neck tumors. However, many anti-cancer drugs are difficult to reach effective concentrations in tumors and can cause damage to normal tissues. Therefore, the efficient delivery of anti-tumor drugs, improvement of their therapeutic effects, and reduction of their adverse effects on the whole body and locally are urgent issues in targeted drug research. Liposomes have been widely studied due to their unique characteristics, including amphiphilicity, biocompatibility, biodegradability, and low toxicity. This article outlines the current applications and prospects of liposome drug delivery systems in different treatment modalities for head and neck tumors in recent years, aiming to provide more options for the treatment of head and neck tumors.
-
Key words:
- liposomes /
- head and neck cancer /
- drug delivery systems /
- cancer treatment
-
-
表 1 脂质体在头颈肿瘤化疗中应用
有效药物 实验类型 肿瘤类型 应用效果 阿霉素(doxorubicin,DOX)、长春瑞滨(vinorebine,VRL) 体内实验、体外实验 人咽鳞状细胞癌FaDu细胞、人口腔上皮癌Ca9-22细胞 细胞杀伤更强;小鼠肿瘤缩小更快且全身毒性更低[ 13 ]紫杉醇(paclitaxel,PTX) 体外实验 人喉癌Hep-2细胞 特异性靶向肿瘤细胞,抑制细胞增殖[14] 熊果酸(ursolic acid,UA) 体内实验、体外实验 人口腔表皮样癌KB细胞 抑制肿瘤生长;药效学研究中抗肿瘤优势更明显[ 15 ]姜黄素(curcumin,CUR) 体内实验、体外实验 人鼻咽癌5-8F细胞 抑制肿瘤细胞增殖,诱导细胞凋亡;抑制异种移植模型中肿瘤生长并减少远处转移[16] 白藜芦醇(resveratrol,RESV)、阿霉素(doxorubicin,DOX) 体外实验 人咽鳞状细胞癌NT8e细胞 2种药物具有协同作用,诱导细胞凋亡,抑制细胞增殖[ 17 ] -
[1] Chow LQM. Head and neck cancer[J]. N Engl J Med, 2020, 382(1): 60-72. doi: 10.1056/NEJMra1715715
[2] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[3] Caudell JJ, Gillison ML, Maghami E, et al. NCCN guidelinesⓇ insights: head and neck cancers, version 1.2022[J]. J Natl Compr Canc Netw, 2022, 20(3): 224-234. doi: 10.6004/jnccn.2022.0016
[4] 黄志刚, 文卫平, 毛薇, 等. 头颈肿瘤的综合治疗策略[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(9): 673-690. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.09.001
[5] Kumar S, Noronha V, Patil V, et al. Advances in pharmacotherapy for head and neck cancer[J]. Expert Opin Pharmacother, 2021, 22(15): 2007-2018. doi: 10.1080/14656566.2021.1948011
[6] Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications[J]. Int J Pharm, 2021, 601: 120571. doi: 10.1016/j.ijpharm.2021.120571
[7] Wang SL, Chen YY, Guo JC, et al. Liposomes for tumor targeted therapy: a review[J]. Int J Mol Sci, 2023, 24(3): 2643. doi: 10.3390/ijms24032643
[8] Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes[J]. Artif Cells Nanomed Biotechnol, 2023, 51(1): 428-440. doi: 10.1080/21691401.2023.2247036
[9] Paramshetti S, Angolkar M, Talath S, et al. Unravelling the in vivo dynamics of liposomes: insights into biodistribution and cellular membrane interactions[J]. Life Sci, 2024, 346: 122616. doi: 10.1016/j.lfs.2024.122616
[10] Sivadasan D, Sultan MH, Madkhali OA, et al. Stealth liposomes(PEGylated)containing an anticancer drug camptothecin: in vitro characterization and in vivo pharmacokinetic and tissue distribution study[J]. Molecules, 2022, 27(3): 1086. doi: 10.3390/molecules27031086
[11] Fulton MD, Najahi-Missaoui W. Liposomes in cancer therapy: how did we start and where are we now[J]. Int J Mol Sci, 2023, 24(7): 6615. doi: 10.3390/ijms24076615
[12] 黎权明, 钟颖, 翁欢欢, 等. 穿膜肽修饰的载顺铂磁性纳米复合物的制备及其对鼻咽癌的体外效应[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(13): 963-968. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.1001-1781.2018.13.001
[13] Wang YP, Liu IJ, Chung MJ, et al. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck[J]. Oral Oncol, 2020, 106: 104689. doi: 10.1016/j.oraloncology.2020.104689
[14] Zhou L, Luo WL. Vascular endothelial growth factor-targeted paclitaxel-loaded liposome microbubbles and inhibition of human epidermoid-2 cell proliferation[J]. Head Neck, 2017, 39(4): 656-661. doi: 10.1002/hed.24648
[15] Yang G, Yang T, Zhang WD, et al. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome[J]. J Agric Food Chem, 2014, 62(10): 2207-2215. doi: 10.1021/jf405675g
[16] Luo HM, Lu LS, Liu N, et al. Curcumin loaded sub-30 nm targeting therapeutic lipid nanoparticles for synergistically blocking nasopharyngeal cancer growth and metastasis[J]. J Nanobiotechnology, 2021, 19(1): 224. doi: 10.1186/s12951-021-00966-6
[17] Mohan A, Narayanan S, Balasubramanian G, et al. Dual drug loaded nanoliposomal chemotherapy: a promising strategy for treatment of head and neck squamous cell carcinoma[J]. Eur J Pharm Biopharm, 2016, 99: 73-83. doi: 10.1016/j.ejpb.2015.11.017
[18] Niu Q, Sun QN, Bai RS, et al. Progress of nanomaterials-based photothermal therapy for oral squamous cell carcinoma[J]. Int J Mol Sci, 2022, 23(18): 10428. doi: 10.3390/ijms231810428
[19] Chu MQ, Hai WX, Zhang ZY, et al. Melanin nanoparticles derived from a homology of medicine and food for sentinel lymph node mapping and photothermal in vivo cancer therapy[J]. Biomaterials, 2016, 91: 182-199. doi: 10.1016/j.biomaterials.2016.03.018
[20] Muhanna N, Jin CS, Huynh E, et al. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models[J]. Theranostics, 2015, 5(12): 1428-1443. doi: 10.7150/thno.13451
[21] Salkho NM, Awad NS, Pitt WG, et al. Photo-induced drug release from polymeric micelles and liposomes: phototriggering mechanisms in drug delivery systems[J]. Polymers, 2022, 14(7): 1286. doi: 10.3390/polym14071286
[22] Mosaddad SA, Mahootchi P, Rastegar Z, et al. Photodynamic therapy in oral cancer: a narrative review[J]. Photobiomodul Photomed Laser Surg, 2023, 41(6): 248-264.
[23] Jia JD, Wu X, Long GW, et al. Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers[J]. Front Immunol, 2023, 14: 1219785. doi: 10.3389/fimmu.2023.1219785
[24] Young J, Yee M, Kim H, et al. Phototoxicity of liposomal Zn-and Al-phthalocyanine against cervical and oral squamous cell carcinoma cells in vitro[J]. Med Sci Monit Basic Res, 2016, 22: 156-164. doi: 10.12659/MSMBR.901039
[25] Wu N, Tu YQ, Fan GR, et al. Enhanced photodynamic therapy/photothermo therapy for nasopharyngeal carcinoma via a tumour microenvironment-responsive self-oxygenated drug delivery system[J]. Asian J Pharm Sci, 2022, 17(2): 253-267. doi: 10.1016/j.ajps.2022.01.002
[26] Kong CQ, Chen XC. Combined photodynamic and photothermal therapy and immunotherapy for cancer treatment: a review[J]. Int J Nanomedicine, 2022, 17: 6427-6446. doi: 10.2147/IJN.S388996
[27] Liu Y, Tian J, Fu YL, et al. Near-infrared light-triggered nanobomb for in situ on-demand maximization of photothermal/photodynamic efficacy for cancer therapy[J]. Biomater Sci, 2021, 9(3): 700-711. doi: 10.1039/D0BM01748E
[28] Wu D, Zhao Z, Wang N, et al. Fluorescence imaging-guided multifunctional liposomes for tumor-specific phototherapy for laryngeal carcinoma[J]. Biomater Sci, 2020, 8(12): 3443-3453. doi: 10.1039/D0BM00249F
[29] Zhang S, Zeng N, Yang JP, et al. Advancements of radiotherapy for recurrent head and neck cancer in modern era[J]. Radiat Oncol, 2023, 18(1): 166. doi: 10.1186/s13014-023-02342-0
[30] García-Anaya MJ, Segado-Guillot S, Cabrera-Rodríguez J, et al. Dose and volume de-escalation of radiotherapy in head and neck cancer[J]. Crit Rev Oncol Hematol, 2023, 186: 103994. doi: 10.1016/j.critrevonc.2023.103994
[31] Sadeghi N, Kok RJ, Bos C, et al. Hyperthermia-triggered release of hypoxic cell radiosensitizers from temperature-sensitive liposomes improves radiotherapy efficacy in vitro[J]. Nanotechnology, 2019, 30(26): 264001. doi: 10.1088/1361-6528/ab0ce6
[32] Artigas C, Mileva M, Flamen P, et al. Targeted radionuclide therapy: an emerging field in solid tumours[J]. Curr Opin Oncol, 2021, 33(5): 493-499. doi: 10.1097/CCO.0000000000000762
[33] Poletto G, Cecchin D, Bartoletti P, et al. Radionuclide delivery strategies in tumor treatment: a systematic review[J]. Curr Issues Mol Biol, 2022, 44(8): 3267-3282. doi: 10.3390/cimb44080225
[34] Lin LT, Chang CY, Chang CH, et al. Involvement of let-7 microRNA for the therapeutic effects of Rhenium-188-embedded liposomal nanoparticles on orthotopic human head and neck cancer model[J]. Oncotarget, 2016, 7(40): 65782-65796. doi: 10.18632/oncotarget.11666
[35] Jiang YH, Fan MZ, Yang ZX, et al. Recent advances in nanotechnology approaches for non-viral gene therapy[J]. Biomater Sci, 2022, 10(24): 6862-6892. doi: 10.1039/D2BM01001A
[36] Weecharangsan W, Lee RJ. Growth inhibition and chemosensitization of human carcinoma cells by human serum albumin-coated liposomal antisense oligodeoxyribonucleotide against bcl-2[J]. Drug Deliv, 2012, 19(6): 292-297. doi: 10.3109/10717544.2012.714810
[37] Yan L, Chen WL, Zeng SG, et al. Inhibition of VEGF expression in tongue squamous cancer cells via RNA interference silencing of iNOS gene[J]. Int J Oral Maxillofac Surg, 2009, 38(4): 369-373. doi: 10.1016/j.ijom.2009.01.017
[38] Fasano M, Corte CMD, Liello RD, et al. Immunotherapy for head and neck cancer: present and future[J]. Crit Rev Oncol Hematol, 2022, 174: 103679. doi: 10.1016/j.critrevonc.2022.103679
[39] Shi Y, Lammers T. Combining nanomedicine and immunotherapy[J]. Acc Chem Res, 2019, 52(6): 1543-1554. doi: 10.1021/acs.accounts.9b00148
[40] Chen SM, Li ZQ, Zhou LM, et al. Cbl-b gene silencing enhances H9 T lymphocyte-mediated killing of human laryngeal squamous cancer Hep-2 cells[J]. J South Med Univ, 2019, 39(5): 554-560.
[41] Heiser C, Hofauer B, Scherer E, et al. Liposomal treatment of xerostomia, odor, and taste abnormalities in patients with head and neck cancer[J]. Head Neck, 2016, 38(Suppl 1): E1232-E1237.
[42] Curcio M, Cirillo G, Amato R, et al. Encapsulation of alpha-lipoic acid in functional hybrid liposomes: promising tool for the reduction of cisplatin-induced ototoxicity[J]. Pharmaceuticals, 2022, 15(4): 394. doi: 10.3390/ph15040394
[43] 陈耀恒, 张宏征. 纳米载体用于内耳靶向递送的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(4): 348-353. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2024.04.017
[44] Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, et al. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: an update[J]. Int J Pharm, 2022, 624: 122022. doi: 10.1016/j.ijpharm.2022.122022
[45] Shah S, Dhawan V, Holm R, et al. Liposomes: Advancements and innovation in the manufacturing process [J]. Adv Drug Deliv Rev, 2020, 154-155: 102-122. doi: 10.1016/j.addr.2020.07.002
[46] Lo YL, Chang CH, Wang CS, et al. PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo-and gene therapies for head and neck cancer[J]. Theranostics, 2020, 10(15): 6695-6714. doi: 10.7150/thno.45164
[47] Liang JG, Yang BN, Zhou XD, et al. Stimuli-responsive drug delivery systems for head and neck cancer therapy[J]. Drug Deliv, 2021, 28(1): 272-284. doi: 10.1080/10717544.2021.1876182
-