纳米载体用于内耳靶向递送的研究进展

陈耀恒, 张宏征. 纳米载体用于内耳靶向递送的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(4): 348-353. doi: 10.13201/j.issn.2096-7993.2024.04.017
引用本文: 陈耀恒, 张宏征. 纳米载体用于内耳靶向递送的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(4): 348-353. doi: 10.13201/j.issn.2096-7993.2024.04.017
CHEN Yaoheng, ZHANG Hongzheng. Research progress in targeted delivery of inner ear using nanocarriers[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(4): 348-353. doi: 10.13201/j.issn.2096-7993.2024.04.017
Citation: CHEN Yaoheng, ZHANG Hongzheng. Research progress in targeted delivery of inner ear using nanocarriers[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(4): 348-353. doi: 10.13201/j.issn.2096-7993.2024.04.017

纳米载体用于内耳靶向递送的研究进展

  • 基金项目:
    国家自然科学基金面上项目(No:82271156);广东省基础与应用基础研究基金项目(No:2022A1515012036)
详细信息

Research progress in targeted delivery of inner ear using nanocarriers

More Information
  • 感音神经性聋、梅尼埃病等各种内耳疾病给患者带来言语交流障碍、工作效率下降等问题,严重影响患者生活质量。内耳存在特殊的解剖结构及血-迷路屏障,目前常用的给药方式往往无法取得令人满意的疗效。纳米载体是目前纳米科技研究的前沿和热点,近年在内耳靶向递送领域取得了不少研究进展,有望最终应用于临床内耳疾病的治疗。本文着重介绍各种纳米载体在内耳靶向递送方面的优势、主要研究成果和局限性进行综述,希望为相关研究提供新的思路。
  • 加载中
  • [1]

    Creber NJ, Eastwood HT, Hampson AJ, et al. Adjuvant agents enhance round window membrane permeability to dexamethasone and modulate basal to apical cochlear gradients[J]. Eur J Pharm Sci, 2019, 126: 69-81. doi: 10.1016/j.ejps.2018.08.013

    [2]

    陆翼年, 雍军, 夏寅, 等. 突发性聋听力损失程度及疗效的多因素分析[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(11): 827-834. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2022.11.004

    [3]

    Lin Q, Guo Q, Zhu M, et al. Application of Nanomedicine in Inner Ear Diseases[J]. Front Bioeng Biotechnol, 2022, 9: 809443. doi: 10.3389/fbioe.2021.809443

    [4]

    Hu Y, Li D, Wei H, et al. Neurite Extension and Orientation of Spiral Ganglion Neurons Can Be Directed by Superparamagnetic Iron Oxide Nanoparticles in a Magnetic Field[J]. Int J Nanomedicine, 2021, 16: 4515-4526. doi: 10.2147/IJN.S313673

    [5]

    Wey K, Schirrmann R, Diesing D, et al. Coating of cochlear implant electrodes with bioactive DNA-loaded calcium phosphate nanoparticles for the local transfection of stimulatory proteins[J]. Biomaterials, 2021, 276: 121009. doi: 10.1016/j.biomaterials.2021.121009

    [6]

    Gunewardene N, Lam P, Ma Y, et al. Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the guinea pig cochlea[J]. J Control Release, 2022, 342: 295-307. doi: 10.1016/j.jconrel.2021.12.037

    [7]

    Luo J, Lin X, Li L, et al. Corrigendum: β-Cyclodextrin and Oligoarginine Peptide-Based Dendrimer-Entrapped Gold Nanoparticles for Improving Drug Delivery to the Inner Ear[J]. Front Bioeng Biotechnol, 2022, 10: 921652. doi: 10.3389/fbioe.2022.921652

    [8]

    Liao AH, Wang CH, Weng PY, et al. Ultrasound-induced microbubble cavitation via a transcanal or transcranial approach facilitates inner ear drug delivery[J]. JCI Insight, 2020, 5(3): e132880. doi: 10.1172/jci.insight.132880

    [9]

    Lin YC, Shih CP, Chen HC, et al. Ultrasound Microbubble-Facilitated Inner Ear Delivery of Gold Nanoparticles Involves Transient Disruption of the Tight Junction Barrier in the Round Window Membrane[J]. Front Pharmacol, 2021, 12: 689032. doi: 10.3389/fphar.2021.689032

    [10]

    Jaudoin C, Agnely F, Nguyen Y, et al. Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy[J]. Int J Pharm, 2021, 592: 120038. doi: 10.1016/j.ijpharm.2020.120038

    [11]

    Kim DH, Nguyen TN, Han YM, et al. Local drug delivery using poly(lactic-co-glycolic acid)nanoparticles in thermosensitive gels for inner ear disease treatment[J]. Drug Deliv, 2021, 28(1): 2268-2277. doi: 10.1080/10717544.2021.1992041

    [12]

    Chen K, Wang F, Ding R, et al. Adhesive and Injectable Hydrogel Microspheres for Inner Ear Treatment[J]. Small, 2022, 18(36): e2106591. doi: 10.1002/smll.202106591

    [13]

    El Kechai N, Mamelle E, Nguyen Y, et al. Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear[J]. J Control Release, 2016, 226: 248-257. doi: 10.1016/j.jconrel.2016.02.013

    [14]

    King EB, Salt AN, Kel GE, et al. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs[J]. Hear Res, 2013, 304: 159-166. doi: 10.1016/j.heares.2013.07.013

    [15]

    Ding S, Xie S, Chen W, et al. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear?[J]. Eur J Pharm Sci, 2019, 126: 11-22. doi: 10.1016/j.ejps.2018.02.031

    [16]

    杨烨, 高珺岩, 姜耀锋, 等. 人工耳蜗植入儿童听觉效果的远期获益[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(3): 197-200, 205. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.03.008

    [17]

    Chen A, Chen Y, Liu S, et al. Mesoporous silica nanoparticle-modified electrode arrays of cochlear implants for delivery of siRNA-TGFβ1 into the inner ear[J]. Colloids Surf B Biointerfaces, 2022, 218: 112753. doi: 10.1016/j.colsurfb.2022.112753

    [18]

    Richardson RT, Wise AK, Thompson BC, et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons[J]. Biomaterials, 2009, 30(13): 2614-2624. doi: 10.1016/j.biomaterials.2009.01.015

    [19]

    Caldas M, Santos AC, Rebelo R, et al. Electro-responsive controlled drug delivery from melanin nanoparticles[J]. Int J Pharm, 2020, 588: 119773. doi: 10.1016/j.ijpharm.2020.119773

    [20]

    Thompson BC, Moulton SE, Richardson RT, et al. Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein[J]. Biomaterials, 2011, 32(15): 3822-3831. doi: 10.1016/j.biomaterials.2011.01.053

    [21]

    Ramaswamy B, Roy S, Apolo AB, et al. Magnetic Nanoparticle Mediated Steroid Delivery Mitigates Cisplatin Induced Hearing Loss[J]. Front Cell Neurosci, 2017, 11: 268.

    [22]

    Du X, Chen K, Kuriyavar S, et al. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs[J]. Otol Neurotol, 2013, 34(1): 41-47. doi: 10.1097/MAO.0b013e318277a40e

    [23]

    Shimoji M, Ramaswamy B, Shukoor MI, et al. Toxicology study for magnetic injection of prednisolone into the rat cochlea[J]. Eur J Pharm Sci, 2019, 126: 33-48. doi: 10.1016/j.ejps.2018.06.011

    [24]

    Kayyali MN, Ramsey AJ, Higbee-Dempsey EM, et al. The Development of a Nano-based Approach to Alleviate Cisplatin-Induced Ototoxicity[J]. J Assoc Res Otolaryngol, 2018, 19(2): 123-132. doi: 10.1007/s10162-017-0648-2

    [25]

    Mukherjee S, Kuroiwa M, Oakden W, et al. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury[J]. Mol Ther, 2022, 30(2): 519-533. doi: 10.1016/j.ymthe.2021.07.013

    [26]

    György B, Sage C, Indzhykulian AA, et al. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV[J]. Mol Ther, 2017, 25(2): 379-391. doi: 10.1016/j.ymthe.2016.12.010

    [27]

    An X, Wang R, Chen E, et al. A forskolin-loaded nanodelivery system prevents noise-induced hearing loss[J]. J Control Release, 2022, 348: 148-157. doi: 10.1016/j.jconrel.2022.05.052

    [28]

    Roy S, Johnston AH, Newman TA, et al. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery[J]. Int J Pharm, 2010, 390(2): 214-224. doi: 10.1016/j.ijpharm.2010.02.003

    [29]

    Kuang X, Zhou S, Guo W, et al. SS-31 peptide enables mitochondrial targeting drug delivery: a promising therapeutic alteration to prevent hair cell damage from aminoglycosides[J]. Drug Deliv, 2017, 24(1): 1750-1761. doi: 10.1080/10717544.2017.1402220

    [30]

    Hou S, Yang Y, Zhou S, et al. Novel SS-31 modified liposomes for improved protective efficacy of minocycline against drug-induced hearing loss[J]. Biomater Sci, 2018, 6(6): 1627-1635. doi: 10.1039/C7BM01181D

    [31]

    Zhou S, Sun Y, Kuang X, et al. Mitochondria-targeting nanomedicine: An effective and potent strategy against aminoglycosides-induced ototoxicity[J]. Eur J Pharm Sci, 2019, 126: 59-68. doi: 10.1016/j.ejps.2018.04.027

    [32]

    Sun C, Wang X, Zheng Z, et al. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration[J]. Int J Nanomedicine, 2015, 10: 3567-3579.

    [33]

    Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977

    [34]

    Kalinec GM, Cohn W, Whitelegge JP, et al. Preliminary Characterization of Extracellular Vesicles From Auditory HEI-OC1 Cells[J]. Ann Otol Rhinol Laryngol, 2019, 128(6_suppl): 52S-60S. doi: 10.1177/0003489419836226

    [35]

    Kalinec GM, Gao L, Cohn W, et al. Extracellular Vesicles From Auditory Cells as Nanocarriers for Anti-inflammatory Drugs and Pro-resolving Mediators[J]. Front Cell Neurosci, 2019, 13: 530.

    [36]

    Ni Z, Zhou S, Li S, et al. Exosomes: roles and therapeutic potential in osteoarthritis[J]. Bone Res, 2020, 8: 25. doi: 10.1038/s41413-020-0100-9

    [37]

    Zeng Y, Qiu Y, Jiang W, et al. Biological Features of Extracellular Vesicles and Challenges[J]. Front Cell Dev Biol, 2022, 10: 816698. doi: 10.3389/fcell.2022.816698

    [38]

    Zhang Y, Xie Y, Hao Z, et al. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis[J]. ACS Appl Mater Interfaces, 2021, 13(16): 18472-18487. doi: 10.1021/acsami.0c22671

    [39]

    Lee S, Lee SY, Park S, et al. In vivo NIRF imaging of tumor targetability of nanosized liposomes in tumor-bearing mice[J]. Macromol Biosci, 2012, 12(6): 849-856. doi: 10.1002/mabi.201200001

    [40]

    Kim D, Shin K, Kwon SG, et al. Synthesis and Biomedical Applications of Multifunctional Nanoparticles[J]. Adv Mater, 2018, 30(49): e1802309. doi: 10.1002/adma.201802309

    [41]

    Yoon JY, Yang KJ, Park SN, et al. The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy[J]. Int J Nanomedicine, 2016, 11: 6123-6134. doi: 10.2147/IJN.S114241

    [42]

    Martín-Saldaña S, Palao-Suay R, Aguilar MR, et al. pH-sensitive polymeric nanoparticles with antioxidant and anti-inflammatory properties against cisplatin-induced hearing loss[J]. J Control Release, 2018, 270: 53-64. doi: 10.1016/j.jconrel.2017.11.032

    [43]

    Wen X, Ding S, Cai H, et al. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid)nanoparticles with hydrophilic molecules[J]. Int J Nanomedicine, 2016, 11: 5959-5969. doi: 10.2147/IJN.S116867

  • 加载中
WeChat 点击查看大图
计量
  • 文章访问数:  246
  • 施引文献:  0
出版历程
收稿日期:  2023-02-01
修回日期:  2023-07-06
刊出日期:  2024-04-03

返回顶部

目录