噪声性听力损失的遗传学研究进展

李丹阳, 王洪阳, 王秋菊. 噪声性听力损失的遗传学研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(4): 343-347. doi: 10.13201/j.issn.2096-7993.2024.04.016
引用本文: 李丹阳, 王洪阳, 王秋菊. 噪声性听力损失的遗传学研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(4): 343-347. doi: 10.13201/j.issn.2096-7993.2024.04.016
LI Danyang, WANG Hongyang, WANG Qiuju. Research progress in genetics of noise-induced hearing loss[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(4): 343-347. doi: 10.13201/j.issn.2096-7993.2024.04.016
Citation: LI Danyang, WANG Hongyang, WANG Qiuju. Research progress in genetics of noise-induced hearing loss[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(4): 343-347. doi: 10.13201/j.issn.2096-7993.2024.04.016

噪声性听力损失的遗传学研究进展

  • 基金项目:
    国家自然科学基金优秀青年基金项目(No:82222016);国家自然科学基金重点项目(No:81830028);国家自然科学基金面上项目(No:82271189,82271171,82171130);解放军总医院优青培育专项(No:2020-YQPY-004);军队医学科技青年培育计划孵化项目(No:21QNPY100);军事科技领域青年人才托举工程项目(No:2021-JCJQ-QT-35)
详细信息

Research progress in genetics of noise-induced hearing loss

More Information
  • 噪声性听力损失(noise-induced hearing loss,NIHL)是由长期噪声暴露导致的获得性进行性感音神经性听力损失。尽管在相同的噪声环境下,暴露人群也具有个体易感差异。随着测序技术的发展,NIHL中涉及氧化应激、免疫炎症、离子稳态、能量平衡、DNA损伤修复等机制的相关基因不断见诸报道,部分基因与噪声暴露指标存在交互作用。本文对近20年的NIHL相关基因多态性及基因-环境交互作用的人群研究进行综述,以期为NIHL风险预测模型构建及个性化干预制定提供依据。
  • 加载中
  • 表 1  噪声性听力损失不同机制的保护基因

    机制 已报道保护基因 SNP
    氧化应激 SOD1 rs2070424(李旭东等2018)
    NOX3 rs12195525[9, 29, 43]
    免疫炎症 JNK1 rs11598320[17]
    CARD8 rs2043211[44]
    IL-6 rs1800795(Braga等2014)
    离子稳态 KCNMA1 rs696211[22]
    PMCA2 rs1719571(Cao等2017)
    能量平衡 12SrRNA G827A(焦洁等2017)
    毛细胞死亡 AKT2 rs41275750[30]
    FAS rs1468063[45]、rs2862833[45]
    CASP3 rs1049216[9, 29, 46-47]、rs6948[9, 29, 46]
    DFNA5/GSDME rs2521758(Zhang等2015)
    表观修饰 EYA4 rs3777781[22]
    GRHL2 rs611419(杨秋月等2016)、rs3735715[32]
    毛细胞损伤修复 MYO1A rs1552245[22]
    PCDH15 rs4540756(Zhang等2014)、rs10825122(Zhang等2014)、rs2384375(Zhang等2014)、rs1930146(Zhang等2014)、rs2384437(Zhang等2014)、rs11004085[22]
    CDH23 rs3802711(王军义等2012)
    其他 GRM7 rs1485175(Yu等2018)
    下载: 导出CSV

    表 2  与噪声指标存在交互作用的基因

    机制 噪声暴露水平 CNE adj-CNE 峰度 接噪工龄
    氧化应激 SOD1SOD2CATGSTM1GSRPON2 SOD1SOD2CATHSPA1B CATNOX3 CAT SOD2GSTP1GSTM1
    免疫炎症 JNK1CARD8 JNK1 STAT3IL-6
    离子稳态 KCNQ1 KCNQ4 KCNQ4
    能量平衡 GAPDH 12S rRNASIK3 GAPDH
    DNA损伤修复 hOGG1 APE1hOGG1XRCC1 hOGG1
    毛细胞死亡 AKT2FOXO3CASP3 GSDMECASP7 FAS FOXO3
    内耳生长发育 NOTCH1 FGF-1
    表观修饰 EYA4GRHL2DNMT1DNMT3AHDAC2HOTAIRCBX4 EYA4GRHL2POU4F3 DNMT1DNMT3AHDAC2XPO5CBX4
    毛细胞损伤修复 PCDH15MYH14 CDH23PCDH15
    其他 PTPRN2PER1 GRM7NRN1 NRN1 NRN1 PTPRN2PER1
    CNE:Cumulative noise exposure,累计噪声暴露量;adj-CNE:调整-CNE,是为了将峰度(β)纳入复杂噪声环境的评估并统一稳态和非稳态噪声的流行病学数据的CNE计算。
    下载: 导出CSV
  • [1]

    Osha U. Occupational Noise Exposure: Hearing Conservation Amendment, Final Rule[J]. Fed Reg, 1983, 48: 9738-9785.

    [2]

    Prince MM, Stayner LT, Smith RJ, et al. A re-examination of risk estimates from the NIOSH Occupational Noise and Hearing Survey(ONHS)[J]. J Acoust Soc Am, 1997, 101(2): 950-963. doi: 10.1121/1.418053

    [3]

    Utidjian HM. Criteria for a recommended standard--occupational exposure to noise. I. Recommendations for a noise standard[J]. J Occup Med, 1974, 16(1): 33-37.

    [4]

    同济大学附属上海市肺科医院, 上海市疾病预防控制中心. 职业性噪声聋的诊断[Z]. 中华人民共和国国家卫生和计划生育委员会, 2014: 1-8.

    [5]

    Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021[J]. Bull World Health Organ, 2021, 99(4): 242-242A. doi: 10.2471/BLT.21.285643

    [6]

    Rabinowitz PM, Sr PWJ, Hur Mobo B, et al. Antioxidant status and hearing function in noise-exposed workers[J]. Hear Res, 2002, 173(1-2): 164-171. doi: 10.1016/S0378-5955(02)00350-7

    [7]

    李坛, 陈国顺, 焦洁, 等. 过氧化氢酶基因单核苷酸多态性与职业人群噪声性听力损失易感性[J]. 卫生研究, 2020, 49(5): 716-723. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ202005006.htm

    [8]

    Bashmakova EE, Krasitskaya VV, Yushkova AD, et al. [To the question of genetic predisposition to the development of professional sensorineural hearing loss][J]. Vestn Otorinolaringol, 2021, 86(1): 15-19. doi: 10.17116/otorino20218601115

    [9]

    Liu SY, Song WQ, Xin JR, et al. NRN1 and CAT Gene Polymorphisms, Complex Noise, and Lifestyles interactively Affect the Risk of Noise-induced Hearing Loss[J]. Biomed Environ Sci, 2021, 34(9): 705-718.

    [10]

    李艳红, 谷桂珍, 周文慧, 等. GSTP1基因多态性与噪声性听力损失易感性的关系[J]. 中华劳动卫生职业病杂志, 2020, 2: 120-124. doi: 10.3760/cma.j.issn.1001-9391.2020.02.009

    [11]

    李静芸, 焦洁, 陈国顺, 等. GPX1基因多态性与噪声性听力损失易感性的关系[J]. 中华劳动卫生职业病杂志, 2020, 2: 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ202304001.htm

    [12]

    袁璐璐, 陈国顺, 焦洁, 等. GSR基因多态性与噪声性听力损失易感性的关系[J]. 中华劳动卫生职业病杂志, 2020, 2: 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ202304001.htm

    [13]

    武珊珊, 于金宁, 焦洁, 等. PON2基因多态性与噪声性听力损失易感性的关系[J]. 中华劳动卫生职业病杂志, 2020, 2: 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ202304001.htm

    [14]

    Zhou H, Zhou J, Li H, et al. Paraoxonase 3 gene polymorphisms are associated with occupational noise-induced deafness: A matched case-control study from China[J]. PLoS One, 2020, 15(10): e0240615. doi: 10.1371/journal.pone.0240615

    [15]

    Wang BS, Xu K, Zhang H, et al. Association between NFE2 L2 Gene Polymorphisms and Noise-induced Hearing Loss in a Chinese Population[J]. Biomed Environ Sci, 2019, 32(6): 465-470.

    [16]

    高登风, 王博深, 孙大伟, 等. STAT3 rs1053005位点与miR-452-3p靶向结合及其基因多态性与噪声性听力损失的关联性[J]. 中华劳动卫生职业病杂志, 2021, 39: 412-417. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFK202403009.htm

    [17]

    Sun D, Wang B, Guo H, et al. Single nucleotide polymorphisms in JNK1 are associated with susceptibility to noise-induced hearing loss in a Chinese population[J]. Int Arch Occup Environ Health, 2021, 94(5): 833-842. doi: 10.1007/s00420-020-01644-0

    [18]

    Yang G, Wang B, Sun D, et al. Genetic association study between TAB2 polymorphisms and noise-induced-hearing-loss in a Han Chinese population[J]. PLoS One, 2021, 16(5): e0251090. doi: 10.1371/journal.pone.0251090

    [19]

    Ding E, Wang H, Han L, et al. Variations in the potassium voltage-gated channel subfamily E regulatory subunit 1 gene associated with noise-induced hearing loss in the Chinese population[J]. Environ Sci Pollut Res Int, 2020, 27(15): 18822-18830. doi: 10.1007/s11356-020-08422-y

    [20]

    Guo H, Ding E, Sheng R, et al. Genetic variation in KCNQ4 gene is associated with susceptibility to noise-induced hearing loss in a Chinese population[J]. Environ Toxicol Pharmacol, 2018, 63: 55-59. doi: 10.1016/j.etap.2018.08.009

    [21]

    周文慧, 谷桂珍, 吴辉, 等. KCNQ4基因多态性与噪声性听力损失易感性的关系[J]. 中华劳动卫生职业病杂志, 2020, 2: 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ202304001.htm

    [22]

    Zhang X, Ni Y, Liu Y, et al. Screening of noise-induced hearing loss(NIHL)-associated SNPs and the assessment of its genetic susceptibility[J]. Environ Health, 2019, 18(1): 30. doi: 10.1186/s12940-019-0471-9

    [23]

    王科, 朱云, 王应强, 等. UCP2基因多态性与噪声性听力损失易感性的关系[J]. 重庆医学, 2020, 49(10): 1643-1647, 1652. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX202010022.htm

    [24]

    Wan L, Wang B, Zhang J, et al. Associations of Genetic Variation in Glyceraldehyde 3-Phosphate Dehydrogenase Gene with Noise-Induced Hearing Loss in a Chinese Population: A Case-Control Study[J]. Int J Environ Res Public Health, 2020, 17(8): 2899. doi: 10.3390/ijerph17082899

    [25]

    Yin H, Guo J, Ding E, et al. Salt-Inducible Kinase 3 Haplotypes Associated with Noise-Induced Hearing Loss in Chinese Workers[J]. Audiol Neurootol, 2020, 25(4): 200-208. doi: 10.1159/000506066

    [26]

    葛欣, 盛荣建, 郭佳娣, 等. hOGG1、APEX1和XRCC1基因单核苷酸多态性与噪声性听力损失的关联研究[J]. 职业卫生与应急救援, 2019, 37(2): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYWS201902003.htm

    [27]

    Ding E, Guo J, Ge X, et al. Analysis of Polymorphisms Associated with Base Excision Repair in Patients Susceptible and Resistant to Noise-Induced Hearing Loss[J]. Dis Markers, 2019, 2019: 9327106.

    [28]

    Ruan Y, Zhang J, Mai S, et al. Role of CASP7 polymorphisms in noise-induced hearing loss risk in Han Chinese population[J]. Sci Rep, 2021, 11(1): 1803. doi: 10.1038/s41598-021-81391-5

    [29]

    辛佳芮, 陈莹琦, 刘双燕, 等. CASP和NOX3多态性与噪声性听力损失发生风险的关系[J]. 中华劳动卫生职业病杂志, 2021, 39(11): 819-824.

    [30]

    Miao L, Wang B, Zhang J, et al. Plasma metabolomic profiling in workers with noise-induced hearing loss: a pilot study[J]. Environ Sci Pollut Res Int, 2021, 28(48): 68539-68550. doi: 10.1007/s11356-021-15468-z

    [31]

    杨秋月, 徐相蓉, 焦洁, 等. EYA4基因多态性与职业噪声性听力损失易感性的关系[J]. 中华预防医学杂志, 2017, 51(1): 27-33.

    [32]

    杨秋月, 王菁菁, 徐相蓉, 等. 三种遗传性耳聋基因交互作用与高频听力损失易感性的关系[J]. 中国工业医学杂志, 2018, 31(2): 83-86, 93, 161. https://www.cnki.com.cn/Article/CJFDTOTAL-SOLE201802002.htm

    [33]

    Wang H, Yang G, Sun D, et al. Histone deacetylase 2 polymorphisms associated with noise-induced hearing loss in Chinese workers[J]. Environ Sci Pollut Res Int, 2021, 28(28): 38254-38262. doi: 10.1007/s11356-021-13486-5

    [34]

    郭佳娣, 盛荣建, 陈剑, 等. XPO5基因单核苷酸多态性与噪声性听力损失易感性关系[J]. 中国职业医学, 2018, 45(5): 558-562, 567. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYX201805007.htm

    [35]

    Wang N, Wang B, Guo J, et al. Erratum to "Single-Nucleotide Polymorphisms in XPO5 are Associated with Noise-Induced Hearing Loss in a Chinese Population"[J]. Biochem Res Int, 2020, 2020: 9649346.

    [36]

    Wang B, Wan L, Sun P, et al. Associations of genetic variation in E3 SUMO-protein ligase CBX4 with noise-induced hearing loss[J]. Hum Mol Genet, 2022, 31(13): 2109-2120. doi: 10.1093/hmg/ddac006

    [37]

    Wan L, Zhang L, Sun P, et al. Association between UBAC2 gene polymorphism and the risk of noise-induced hearing loss: a cross-sectional study[J]. Environ Sci Pollut Res Int, 2022, 29(22): 32947-32958. doi: 10.1007/s11356-021-18360-y

    [38]

    Wagner EL, Shin JB. Mechanisms of Hair Cell Damage and Repair[J]. Trends Neurosci, 2019, 42(6): 414-424. doi: 10.1016/j.tins.2019.03.006

    [39]

    郑晨, 王瑾琳, 张素伟, 等. 钙黏蛋白23基因多态性与飞行学员噪声性听力损失的关系[J]. 中国眼耳鼻喉科杂志, 2017, 17(3): 162-165. https://www.cnki.com.cn/Article/CJFDTOTAL-YRBH201703005.htm

    [40]

    焦洁, 谷桂珍, 陈国顺, 等. CDH23基因多态性与噪声性听力损失发生风险关系研究[J]. 中华劳动卫生职业病杂志, 2020, 2: 84-90.

    [41]

    Jiang Z, Fa B, Zhang X, et al. Identifying genetic risk variants associated with noise-induced hearing loss based on a novel strategy for evaluating individual susceptibility[J]. Hear Res, 2021, 407: 108281. doi: 10.1016/j.heares.2021.108281

    [42]

    Niu Y, Xie C, Du Z, et al. Genome-wide association study identifies 7q11.22 and 7q36.3 associated with noise-induced hearing loss among Chinese population[J]. J Cell Mol Med, 2021, 25(1): 411-420. doi: 10.1111/jcmm.16094

    [43]

    Zhao T, Wang Y, Li Z, et al. Associations of noise kurtosis, genetic variations in NOX3 and lifestyle factors with noise-induced hearing loss[J]. Environ Health, 2020, 19(1): 13. doi: 10.1186/s12940-020-0566-3

    [44]

    Miao L, Wang B, Ji J, et al. CARD8 polymorphism rs2043211 protects against noise-induced hearing loss by causing the dysfunction of CARD8 protein[J]. Environ Sci Pollut Res Int, 2021, 28(7): 8626-8636. doi: 10.1007/s11356-020-11193-1

    [45]

    Xu S, Wang B, Han L, et al. Polymorphisms in the FAS gene are associated with susceptibility to noise-induced hearing loss[J]. Environ Sci Pollut Res Int, 2021, 28(17): 21754-21765. doi: 10.1007/s11356-020-12028-9

    [46]

    Wu Y, Ni J, Qi M, et al. Associations of genetic variation in CASP3 gene with noise-induced hearing loss in a Chinese population: a case-control study[J]. Environ Health, 2017, 16(1): 78. doi: 10.1186/s12940-017-0280-y

    [47]

    齐明键, 高鹤, 曹承建, 等. CASP3和CASP7基因多态性与噪声性听力损失易感性关系[J]. 中国公共卫生, 2017, 33: 905-911. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW201706010.htm

    [48]

    Lavinsky J, Ge M, Crow AL, et al. The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction[J]. G3(Bethesda), 2016, 6(10): 3219-3228.

    [49]

    薛鑫淼, 陈学敏, 徐瑾, 等. 噪声性耳聋相关易感基因的研究进展[J]. 中华耳科学杂志, 2020, 18(1): 168-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHER202001029.htm

  • 加载中
计量
  • 文章访问数:  848
  • PDF下载数:  139
  • 施引文献:  0
出版历程
收稿日期:  2023-01-03
刊出日期:  2024-04-03

目录