大理地区2 102例孕妇常见遗传性聋基因筛查结果分析

王博文, 马藩源, 田春杰. 大理地区2 102例孕妇常见遗传性聋基因筛查结果分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(11): 1061-1065. doi: 10.13201/j.issn.2096-7993.2024.11.012
引用本文: 王博文, 马藩源, 田春杰. 大理地区2 102例孕妇常见遗传性聋基因筛查结果分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(11): 1061-1065. doi: 10.13201/j.issn.2096-7993.2024.11.012
WANG Bowen, MA Fanyuan, TIAN Chunjie. The analysis of gene screening results for common hereditary hearing loss in 2 102 pregnant women in Dali area[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(11): 1061-1065. doi: 10.13201/j.issn.2096-7993.2024.11.012
Citation: WANG Bowen, MA Fanyuan, TIAN Chunjie. The analysis of gene screening results for common hereditary hearing loss in 2 102 pregnant women in Dali area[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(11): 1061-1065. doi: 10.13201/j.issn.2096-7993.2024.11.012

大理地区2 102例孕妇常见遗传性聋基因筛查结果分析

详细信息

The analysis of gene screening results for common hereditary hearing loss in 2 102 pregnant women in Dali area

More Information
  • 目的  通过对大理地区孕17周以内的孕妇开展遗传性聋基因检测,强调孕期基因检测和遗传咨询的重要性。 方法  通过PCR扩增技术,对GJB2GJB3SLC26A4mtDNA等4个耳聋基因的21个突变位点进行检测,并对阳性样本的阳性率、突变率和民族分布进行统计描述性分析。 结果  GJB2SLC26A4基因的阳性率为1.24%和1.43%,在阳性样本中突变率分别占40.62%和46.88%,GJB3基因的阳性率为0.19%,mtDNA突变基因占0.14%,且全部为mtDNA(Heterozygous),双阳多基因突变型GJB2/SLC26A4仅为1例,阳性率为0.05%,GJB2 c.235delC位点携带频率最高,占GJB2突变基因的65.38%,占突变基因样本26.56%。 结论  GJB2SLC26A4为最常见的耳聋基因,且GJB2 c.235delC位点最常见,确认耳聋突变位点有助于防止遗传性耳聋儿童出生,基因诊断、遗传咨询和适当的干预对于缓解先天性问题是至关重要的。
  • 加载中
  • 图 1  各民族的基因型和基因位点分布情况列联表

    表 1  孕妇耳聋基因突变位点的各民族分布 例(%)

    基因 突变位点 民族 总计
    汉族 白族 彝族 回族
    GJB2 c.167delT 2(3.13) 0 0 0 2(3.13)
    c.176_191del16 2(3.13) 0 0 0 2(3.13)
    c.235delC 6(9.38) 5(7.80) 6(9.38) 0 17(26.57)
    c.299_300delAT 0 0 0 0 0
    c.35delG 1(1.56) 0 1(1.56) 0 2(3.13)
    c.508_511dupAACG 0 1(1.56) 1(1.56) 1(1.56) 3(4.68)
    GJB3 c.538C>T 0 0 0 1(1.56) 1(1.56)
    c.547G>A 3(4.69) 0 0 0 3(4.68)
    SLC26A4 c.1174A>T 2(3.13) 1(1.56) 0 0 3(4.68)
    c.1226G>A 0 0 0 0 0
    c.1229C>T 3(4.69) 0 0 0 3(4.68)
    c.1707+5G>A 2(3.13) 0 0 0 2(3.13)
    c.1975G>C 4(6.25) 0 0 0 4(6.25)
    c.2027T>A 4(6.25) 0 0 0 4(6.25)
    c.2162C>T 2(3.13) 0 0 0 2(3.13)
    c.2168A>G 2(3.13) 1(1.56) 1(1.56) 0 4(6.25)
    c.281C>T 2(3.13) 0 0 0 2(3.13)
    c.589G>A 1(1.56) 0 0 0 1(1.56)
    c.919-2A>G 2(3.13) 0 3(4.69) 0 5(7.81)
    mtDNA m.1494C>T 0 0 0 0 0
    m.1555A>G 3(4.69) 0 0 0 3(4.68)
    GJB2/SLC26A4 c.176_191del16/c.919-2A>G 1(1.56) 0 0 0 1(1.56)
    合计 42(65.63) 8(12.50) 12(18.75) 2(3.12) 64(100.00)
    下载: 导出CSV
  • [1]

    Zheng KF, Lin S, Gao J, et al. Novel compound heterozygous MYO15A splicing variants in autosomal recessive non-syndromic hearing loss[J]. BMC Med Genomics, 2024, 17(1): 4. doi: 10.1186/s12920-023-01777-4

    [2]

    贺骏, 纳洋, 刘激扬. 携带GJB2或SLC26A4基因单杂合变异新生儿的Sanger测序分析[J]. 中华医学遗传学杂志, 2020, 37(11): 1213-1216. doi: 10.3760/cma.j.cn511374-20200304-00126

    [3]

    谢璧蔚, 李兰. 耳聋基因GJB2及SLC26A4临床表型研究进展[J]. 国际耳鼻咽喉头颈外科杂志, 2021, 45(6): 333-336. doi: 10.3760/cma.j.issn.1673-4106.2021.06.006

    [4]

    张拔山, 李婵, 朱梓年, 等. 东莞地区16 182名个体18个耳聋易感基因100个变异位点的测序筛查[J]. 中华医学遗传学杂志, 2020, 37(4): 373-377. doi: 10.3760/cma.j.issn.1003-9406.2020.04.003

    [5]

    Lin YH, Wu PC, Tsai CY, et al. Hearing impairment with monoallelic GJB2 variants: a GJB2 cause or non-GJB2 cause?[J]. 2021, 23(10): 1279-1291.

    [6]

    李溢铭, 王洪阳, 李丹阳, 等. 听神经病患者中GJB2基因变异分布特征及相关性分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 23-29. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2024.01.004

    [7]

    Falah M, Houshmand M, Balali M, et al. Role of GJB2 and GJB6 in Iranian nonsyndromic hearing impairment: from molecular analysis to literature reviews[J]. Fetal Pediatr Pathol, 2020, 39(1): 1-12. doi: 10.1080/15513815.2019.1627625

    [8]

    Le Nabec A, Collobert M, Le Maréchal C, et al. Whole-genome sequencing improves the diagnosis of DFNB1 monoallelic patients[J]. Genes, 2021, 12(8): 1267. doi: 10.3390/genes12081267

    [9]

    Petrova N, Tebieva I, Kadyshev V, et al. Hereditary etiology of non-syndromic sensorineural hearing loss in the Republic of North Ossetia-Alania[J]. PeerJ, 2023, 11: e14514. doi: 10.7717/peerj.14514

    [10]

    Jiang Y, Huang SS, Zhang Y, et al. Evolutionary origin of pathogenic GJB2 alleles in China[J]. Clin Genet, 2022, 102(4): 305-313. doi: 10.1111/cge.14191

    [11]

    汪在华, 邵莹, 李隽. GJB2基因p. V37I变异及类型与耳聋致病风险的荟萃分析[J]. 中华医学遗传学杂志, 2022, 39(12): 1313-1318. doi: 10.3760/cma.j.cn511374­20220321-00186

    [12]

    Doll J, Vona B, Schnapp L, et al. Genetic spectrum of syndromic and non-syndromic hearing loss in Pakistani families[J]. Genes, 2020, 11(11): 1329. doi: 10.3390/genes11111329

    [13]

    Aliazami F, Farhud D, Zarif-Yeganeh M, et al. Gjb3 gene mutations in non-syndromic hearing loss of Bloch, kurd, and Turkmen ethnicities in Iran[J]. Iran J Public Health, 2020, 49(11): 2128-2135.

    [14]

    Gao YJ, Zhang QL, Zhang SY, et al. A connexin gene(GJB3)mutation in a Chinese family with erythrokeratodermia variabilis, ichthyosis and nonsyndromic hearing loss: case report and mutations update[J]. Front Genet, 2022, 13: 797124. doi: 10.3389/fgene.2022.797124

    [15]

    Zeng XX, Liu ZF, Wang J, et al. Combined hearing screening and genetic screening of deafness among Hakka newborns in China[J]. Int J Pediatr Otorhinolaryngol, 2020, 136: 110120. doi: 10.1016/j.ijporl.2020.110120

    [16]

    Ma DY, Zhang JJ, Luo CY, et al. Genetic counseling for patients with nonsyndromic hearing impairment directed by gene analysis[J]. Mol Med Rep, 2016, 13(3): 1967-1974. doi: 10.3892/mmr.2016.4769

    [17]

    Hu H, Zhou P, Wu JY, et al. Genetic testing involving 100 common mutations for antenatal diagnosis of hereditary hearing loss in Chongqing, China[J]. Medicine, 2021, 100(17): e25647. doi: 10.1097/MD.0000000000025647

    [18]

    陈芳, 张勤颖, 张秋静, 等. 合并感音神经性耳聋的遗传性内分泌代谢病研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 63-69.

    [19]

    Gong YY, Xiong L, Li XJ, et al. A novel mutation of WFS1 gene leading to increase ER stress and cell apoptosis is associated an autosomal dominant form of Wolfram syndrome type 1[J]. BMC Endocr Disord, 2021, 21(1): 76. doi: 10.1186/s12902-021-00748-z

    [20]

    Chou CW, Hsu YC. Current development of patient-specific induced pluripotent stem cells harbouring mitochondrial gene mutations and their applications in the treatment of sensorineural hearing loss[J]. Hear Res, 2023, 429: 108689. doi: 10.1016/j.heares.2023.108689

    [21]

    Wu J, Hao ZJ, Fu DG, et al. Mitochondrial mutations associated with aminoglycoside ototoxicity and hearing loss susceptibility identified by meta-analysis[J]. J Med Genet, 2015, 52(2): 95-103. doi: 10.1136/jmedgenet-2014-102753

    [22]

    Wang JH, Yan DD, Cui HY, et al. Identification of eight genomic protective alleles for mitochondrial diabetes by Kinship-graph convolutional network[J]. J Diabetes Investig, 2024, 15(1): 52-62. doi: 10.1111/jdi.14125

    [23]

    雷洁, 韩璐好, 邓茜, 等. 33 911例新生儿听力联合耳聋基因筛查及随访结果的分析[J]. 中华医学遗传学杂志, 2021, 38(1): 32-36. doi: 10.3760/cma.j.cn511374-20200322-00189

    [24]

    Han MY, Li ZF, Wang WL, et al. A quantitative cSMART assay for noninvasive prenatal screening of autosomal recessive nonsyndromic hearing loss caused by GJB2 and SLC26A4 mutations[J]. Genet Med, 2017, 19(12): 1309-1316. doi: 10.1038/gim.2017.54

    [25]

    中国耳聋基因筛查与诊断临床多中心研究协作组, 全国防聋治聋技术指导组. 遗传性耳聋基因筛查规范[J]. 中华医学杂志, 2021, 101(2): 97-102. doi: 10.3760/cma.j.cn112137-20201029-02957

    [26]

    令娜娜, 郭玉芬, 徐百成. 遗传性耳聋的三级预防策略进展[J]. 实用预防医学, 2021, 28(8): 1021-1024, 封3. doi: 10.3969/j.issn.1006-3110.2021.08.035

    [27]

    王秋菊, 陈晓巍, 翟晓梅, 等. 孕期耳聋基因筛查专家共识[J]. 中华耳科学杂志, 2022, 20(2): 217-221.

  • 加载中

(1)

(1)

计量
  • 文章访问数:  385
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2024-03-10
刊出日期:  2024-11-03

目录