听神经病患者中 GJB2 基因变异分布特征及相关性分析

李溢铭, 王洪阳, 李丹阳, 等. 听神经病患者中 GJB2 基因变异分布特征及相关性分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 23-29. doi: 10.13201/j.issn.2096-7993.2024.01.004
引用本文: 李溢铭, 王洪阳, 李丹阳, 等. 听神经病患者中 GJB2 基因变异分布特征及相关性分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 23-29. doi: 10.13201/j.issn.2096-7993.2024.01.004
LI Yiming, WANG Hongyang, LI Danyang, et al. Distribution characteristics and correlation analysis of GJB2 variation in patients with auditory neuropathy[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(1): 23-29. doi: 10.13201/j.issn.2096-7993.2024.01.004
Citation: LI Yiming, WANG Hongyang, LI Danyang, et al. Distribution characteristics and correlation analysis of GJB2 variation in patients with auditory neuropathy[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(1): 23-29. doi: 10.13201/j.issn.2096-7993.2024.01.004

听神经病患者中 GJB2 基因变异分布特征及相关性分析

  • 基金项目:
    国家自然科学基金优秀青年基金项目(No:82222016);国家自然科学基金重点项目(No:81830028);国家自然科学基金面上项目(No:82171130、82271189、82271171)
详细信息

Distribution characteristics and correlation analysis of GJB2 variation in patients with auditory neuropathy

More Information
  • 目的 探究 GJB2基因与听神经病之间的关系, 为此类患者及家庭的遗传咨询提供参考。方法 对117例听神经病患者的基本信息、听力学资料(包括纯音测听、畸变耳声发射、听性脑干反应、耳蜗电图)、影像学资料、遗传学检测等数据进行收集, 并筛选出携带 GJB2基因变异的患者对其进行听神经病相关分析。结果 共计16例患者检出 GJB2基因变异, 变异位点致病性均为致病的或可能致病的, 其中1例为 GJB2[c.427C>T][c.358_360del]复合杂合变异, 听力学表现为全聋, 1例为 GJB2[c.299_300delAT][c.35_36insG]复合杂合变异, 听力学表现为重度听力损失, 其余14例携带 GJB2基因变异患者听力学表型均为典型听神经病。结论 本研究初步分析了 GJB2基因与听神经病的相关性, 并阐述了 GJB2基因变异可能与听神经病表型相关的致病机制。
  • 加载中
  • 图 1  先证者1007131

    图 2  先证者1007131耳蜗电图波形图

    图 3  先证者1007131相关sanger测序峰图

    图 4  先证者2108924

    表 1  GJB2 基因变异携带或复合杂合患者基因信息

    编号 国家 性别 发病年龄/岁 检测年龄/岁 GJB2变异
    核苷酸 氨基酸 致病性
    1006855 中国 2.5 2.5 c.88A>G p.Ile30Val VUS
    1007131 中国 2.5 14.0 c.427C>T p.Arg143Trp P
    c.358_360del p.Glu120del P
    1507400 中国 25.0 26.0 c.416G>A p.Ser139Asn LP
    1607577 中国 25.0 25.0 c.416G>A p.Ser139Asn P
    1707823 中国 0 65.0 c.416G>A p.Ser139Asn P
    1808071 中国 13.0 15.0 c.235delC p.Leu79CysfsTer3 P
    1908250 中国 0 0.5 c.235delC p.Leu79CysfsTer3 P
    1908462 中国 0 2.0 c.299_300delAT p.His100ArgfsTer14 P
    2008588 中国 0 3.0 c.235delC p.Leu79Cysfs*3 P
    2108673 中国 5.0 5.0 c.109G>A p.Val37Ile P
    2108924 中国 6.0 10.0 c.299_300delAT p.His100Argfs*14 P
    c.35_36insG p.Val13Cysfs*35 P
    2209055 中国 0 1.0 c.109G>A p.Val37Ile P
    2209171 中国 0 6.0 c.-23+1G>A / P
    2209213 中国 29.0 36.0 c.109G>A p.Val37Ile P
    2309264 中国 3.0 4.0 c.109G>A p.Val37Ile P
    2309270 中国 0 3.0 c.571T>C p.Phe191Leu VUS
    P为致病性,LP为可能致病,VUS为意义未明。
    下载: 导出CSV

    表 2  文献报道过的GJB2纯合及复合杂合患者听神经病致病位点

    参考文献 致病位点 OAE
    (左)
    OAE
    (右)
    ABR
    (左)
    ABR
    (右)
    临床表现 ECochG
    (CM左)
    ECochG
    (CM右)
    ECochG
    (CAP左)
    ECochG
    (CAP右)
    本文 c.427C>T/c.358_360del Y Y N N 双耳全聋 Y N N N
    本文 c.299_300delAT/c.35_36insG Y Y N N 双耳重度听力损失 / / / /
    Cheng X等[11] 35delG/V95M Y Y N N 双耳中度听力损失 / / / /
    Santarelli R等[12] 35delG/35delG Y N N N 右耳重度听力损失左耳中度听力损失 Y Y Y N
    Santarelli R等[12] 35delG/35delG Y Y N N 双耳重度听力损失 Y Y N Y
    下载: 导出CSV
  • [1]

    中国听神经病临床诊断与干预多中心研究协作组, 中华耳鼻咽喉头颈外科杂志编辑委员会, 中华医学会耳鼻咽喉头颈外科学分会, 等. 中国听神经病临床实践指南(2022版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(3): 241-262.

    [2]

    Kamiya K, Yum SW, Kurebayashi N, et al. Assembly of the cochlear gap junction macromolecular complex requires connexin 26[J]. J Clin Invest, 2014, 124(4): 1598-1607. doi: 10.1172/JCI67621

    [3]

    He Z, Guo L, Shu Y, et al. Autophagy protects auditory hair cells against neomycin-induced damage[J]. Autophagy, 2017, 13(11): 1884-1904. doi: 10.1080/15548627.2017.1359449

    [4]

    Chai R, Li H, Yang T, et al. Editorial: Hearing Loss: Mechanisms and Prevention[J]. Front Cell Dev Biol, 2022, 10: 838271. doi: 10.3389/fcell.2022.838271

    [5]

    Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. doi: 10.1038/gim.2015.30

    [6]

    Nikolopoulos TP, Archbold SM, Gregory S. Young deaf children with hearing aids or cochlear implants: early assessment package for monitoring progress[J]. Int J Pediatr Otorhinolaryngol, 2005, 69(2): 175-186. doi: 10.1016/j.ijporl.2004.08.016

    [7]

    王大华, 周慧芳, 张静. 中文版听觉行为分级对语前聋儿童人工耳蜗植入术后汉语听觉行为评估的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2015, 29(5): 441-444. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.1001-1781.2015.05.016

    [8]

    王宇, 潘滔, 米思, 等. 中文版言语可懂度分级标准的建立及其信度检验[J]. 听力学及言语疾病杂志, 2013, 21(5): 465-468. https://www.cnki.com.cn/Article/CJFDTOTAL-TLXJ201305008.htm

    [9]

    Minami SB, Masuda S, Usui S, et al. Comorbidity of GJB2 and WFS1 mutations in one family[J]. Gene, 2012, 501(2): 193-197. doi: 10.1016/j.gene.2012.03.060

    [10]

    Koohiyan M, Hashemzadeh-Chaleshtori M, Salehi M, et al. GJB2 mutations causing autosomal recessive non-syndromic hearing loss(ARNSHL)in two Iranian populations: Report of two novel variants[J]. Int J Pediatr Otorhinolaryngol, 2018, 107: 121-126. doi: 10.1016/j.ijporl.2018.01.012

    [11]

    Cheng X, Li L, Brashears S, et al. Connexin 26 variants and auditory neuropathy/dys-synchrony among children in schools for the deaf[J]. Am J Med Genet A, 2005, 139(1): 13-18.

    [12]

    Santarelli R, Cama E, Scimemi P, et al. Audiological and electrocochleography findings in hearing-impaired children with connexin 26 mutations and otoacoustic emissions[J]. Eur Arch Otorhinolaryngol, 2008, 265(1): 43-51.

    [13]

    Huang J, Deng K, Wu H, et al. Efficient production of mice from embryonic stem cells injected into four-or eight-cell embryos by piezo micromanipulation[J]. Stem Cells, 2008, 26(7): 1883-1890. doi: 10.1634/stemcells.2008-0164

    [14]

    Ramírez MA, Fernández-González R, Pérez-Crespo M, et al. Effect of stem cell activation, culture media of manipulated embryos, and site of embryo transfer in the production of F0 embryonic stem cell mice[J]. Biol Reprod, 2009, 80(6): 1216-1222. doi: 10.1095/biolreprod.108.075044

    [15]

    Wang Y, Jin Y, Zhang Q, et al. Research progress in delineating the pathological mechanisms of GJB2-related hearing loss[J]. Front Cell Neurosci, 2023, 17: 1208406. doi: 10.3389/fncel.2023.1208406

    [16]

    Zhao HB. Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26(GJB2) Deficiency[J]. Front Mol Neurosci, 2017, 10: 162. doi: 10.3389/fnmol.2017.00162

    [17]

    Chai R, Li GL, Wang J, et al. Hearing Loss: Reestablish the Neural Plasticity in Regenerated Spiral Ganglion Neurons and Sensory Hair Cells 2018[J]. Neural Plast, 2018, 2018: 4759135.

    [18]

    Inoshita A, Iizuka T, Okamura HO, et al. Postnatal development of the organ of Corti in dominant-negative Gjb2 transgenic mice[J]. Neuroscience, 2008, 156(4): 1039-1047. doi: 10.1016/j.neuroscience.2008.08.027

    [19]

    Liang C, Zhu Y, Zong L, et al. Cell degeneration is not a primary causer for Connexin26(GJB2) deficiency associated hearing loss[J]. Neurosci Lett, 2012, 528(1): 36-41. doi: 10.1016/j.neulet.2012.08.085

    [20]

    Manchaiah VK, Zhao F, Danesh AA, et al. The genetic basis of auditory neuropathy spectrum disorder (ANSD)[J]. Int J Pediatr Otorhinolaryngol, 2011, 75(2): 151-158. doi: 10.1016/j.ijporl.2010.11.023

    [21]

    Jang MW, Oh DY, Yi E, et al. A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder[J]. Proc Natl Acad Sci USA, 2021, 118(22): e2019681118. doi: 10.1073/pnas.2019681118

    [22]

    Fetoni AR, Zorzi V, Paciello F, et al. Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway[J]. Redox Biol, 2018, 19: 301-317. doi: 10.1016/j.redox.2018.08.002

    [23]

    Liu W, Xu L, Wang X, et al. PRDX1 activates autophagy via the PTEN-AKT signaling pathway to protect against cisplatin-induced spiral ganglion neuron damage[J]. Autophagy, 2021, 17(12): 4159-4181. doi: 10.1080/15548627.2021.1905466

    [24]

    Wang M, Dong Y, Gao S, et al. Hippo/YAP signaling pathway protects against neomycin-induced hair cell damage in the mouse cochlea[J]. Cell Mol Life Sci, 2022, 79(2): 79. doi: 10.1007/s00018-021-04029-9

    [25]

    Loan J, Al-Shahi Salman R, McColl BW, et al. Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage[J]. Biomolecules, 2022, 12(10): 1438. doi: 10.3390/biom12101438

    [26]

    Watanabe K, Oshima T, Kobayashi T, et al. The expression and localization of heme oxygenase in the adult guinea pig cochlea[J]. Brain Res, 2003, 966(1): 162-166. doi: 10.1016/S0006-8993(02)04209-9

    [27]

    Zhang H, Davies K, Forman HJ. Oxidative stress response and Nrf2 signaling in aging[J]. Free Radic Biol Med, 2015, 88(Pt B): 314-336.

    [28]

    Androvic P, Kirdajova D, Tureckova J, et al. Decoding the Transcriptional Response to Ischemic Stroke in Young and Aged Mouse Brain[J]. Cell Rep, 2020, 31(11): 107777. doi: 10.1016/j.celrep.2020.107777

    [29]

    Lin PH, Wu HP, Wu CM, et al. Cochlear Implantation Outcomes in Patients with Auditory Neuropathy Spectrum Disorder of Genetic and Non-Genetic Etiologies: A Multicenter Study[J]. Biomedicines, 2022, 10(7): 1523. doi: 10.3390/biomedicines10071523

    [30]

    Bernardes M, Costa C, Ramos H, et al. Cochlear Implantation in Children with Auditory Neuropathy: Meta-Analysis[J]. Audiol Neurootol, 2023: 1-14.

    [31]

    Lin PH, Wu HP, Wu CM, et al. Cochlear Implantation Outcomes in Patients with Auditory Neuropathy Spectrum Disorder of Genetic and Non-Genetic Etiologies: A Multicenter Study[J]. Biomedicines, 2022, 10(7): 1523. doi: 10.3390/biomedicines10071523

  • 加载中

(4)

(2)

计量
  • 文章访问数:  420
  • PDF下载数:  199
  • 施引文献:  0
出版历程
收稿日期:  2023-10-15
刊出日期:  2024-01-03

目录