TMPRSS3 复合杂合型突变导致迟发性遗传性听力损失

王月莹, 梁悦, 黄碧雪, 等. TMPRSS3 复合杂合型突变导致迟发性遗传性听力损失[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(8): 679-686. doi: 10.13201/j.issn.2096-7993.2024.08.002
引用本文: 王月莹, 梁悦, 黄碧雪, 等. TMPRSS3 复合杂合型突变导致迟发性遗传性听力损失[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(8): 679-686. doi: 10.13201/j.issn.2096-7993.2024.08.002
WANG Yueying, LIANG Yue, HUANG Bixue, et al. Late-onset hereditary hearing loss caused by TMPRSS3 compound heterozygous mutations[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(8): 679-686. doi: 10.13201/j.issn.2096-7993.2024.08.002
Citation: WANG Yueying, LIANG Yue, HUANG Bixue, et al. Late-onset hereditary hearing loss caused by TMPRSS3 compound heterozygous mutations[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(8): 679-686. doi: 10.13201/j.issn.2096-7993.2024.08.002

TMPRSS3 复合杂合型突变导致迟发性遗传性听力损失

  • 基金项目:
    广东省基础与应用基础研究基金项目(No:2022A1515220176)
详细信息

Late-onset hereditary hearing loss caused by TMPRSS3 compound heterozygous mutations

More Information
  • 目的 明确导致两个无相关性的家系发生迟发性听力损失的遗传病因。方法 利用二代测序,结合Sanger测序和生物信息学预测工具对两个家系成员的临床资料进行分析。结果 两个家系的患者均表现为10余岁起的以中高频为主的渐进性听力下降,且均出现言语识别率下降。二代测序提示听力下降与 TMPRSS3 基因突变有关,并筛选出3个杂合位点的突变,其中c.383T>C是首次报道的突变。生信预测提示本研究发现的5种 TMPRSS3 基因突变根据指南被归类为“致病性”或“可能致病性”。结论 TMPRSS3 基因复合杂合突变可能是导致迟发性遗传性听力损失的原因,应关注携带该致病基因突变患者青少年时期的听力情况。
  • 加载中
  • 图 1  携带 TMPRSS3 突变的两个家系图(黑色箭头指向先证者)

    图 2  两位先证者的听力结果

    图 3  3个位于不同区域的突变的遗传和功能分析

    图 4  通过STRING网络预测 TMPRSS3 与其他基因之间的相关功能基因

    表 1  2位先证者的临床特征

    先证者来源 年龄/岁 性别 发病年龄/岁 DPOAE ABR/ dB nHL 纯音听阈 前庭功能 内耳形态 干预手段 听力情况
    家系1 27 17 未引出 >100 陡降型 正常 正常 助听器 大多可补偿
    家系2 17 15 - - 陡降型 正常 正常 观察 影响不大
    下载: 导出CSV

    表 2  两位先证者中鉴定的疑似变异的生物信息学数据

    基因 蛋白质 Mutation Taster Polyphen-2 SIFT Mutation Assessor FATHMM ACMG分类 dbSNP
    TMPRSS3
      c.271C>T p.R91X NMD - - - - 致病 rs199903164
      c.383T>C p.M128T 致病 良性 有害 良性 可能致病 -
      c.743C>T p.T248M 致病 可能致病 有害 良性 可能致病 rs768140716
    USH2A
      c.3167A>G p.Q1057R 致病 可能致病 有害 有害 可能致病 -
      c.11233T>C p.Y3745H 致病 可能致病 有害 有害 可能致病 rs199868558
    NMD:无义介导的mRNA衰变。
    下载: 导出CSV

    表 3  听力下降相关的 TMPRSS3 突变

    突变位点 国家 氨基酸改变 变异类型 结构域 dbSNP
    c.757A>G 摩洛哥 p.I253V 错义突变 丝氨酸蛋白酶 rs2839500
    c.331G>A 摩洛哥 p.G111S 错义突变 SRCR rs35227181
    c.268G>A 摩洛哥 p.A90T 错义突变 LDLRA rs45598239
    c.157G>A 摩洛哥 p.V53I 错义突变 TM rs928302
    c.346G>A 韩国 p.V116M 错义突变 SRCR rs200090033
    c.1273G>A 荷兰 p.A426T 错义突变 丝氨酸蛋白酶 rs56264519
    c.1216T>C 巴基斯坦 p.C407R 错义突变 丝氨酸蛋白酶 rs773780151
    c.916G>A 中国/韩国/荷兰 p.A306T 错义突变 丝氨酸蛋白酶 rs181949335
    c.767C>T 巴基斯坦 p.A256V 错义突变 丝氨酸蛋白酶 rs1306292205
    c.743C>T 韩国 p.T248M 错义突变 丝氨酸蛋白酶 rs768140716
    c.595G>A 荷兰 p.V199M 错义突变 SRCR rs772040483
    c.325C>T 韩国 p.R109W 错义突变 SRCR rs201632198
    c.310G>A 巴基斯坦 p.E104K 错义突变 LDLRA rs373058706
    c.212T>C 日本 p.F71S 错义突变 LDLRA rs185332310
    c.783-1G>A 韩国 / 剪切受体突变 / rs1237955948
    c.579dup 意大利 p.Cys194fs 移码突变 SRCR rs397517376
    c.208del 荷兰 p.His70fs 移码突变 LDLRA rs727503493
    c.271C>T 巴基斯坦 p.R91X 翻译提前终止 LDLRA rs199903164
    SRCR:清除受体半胱氨酸富域;LDLRA:低密度脂蛋白受体A;TM:跨膜。
    下载: 导出CSV
  • [1]

    王秋菊, 王洪阳, 卢伟, 等. 遗传性聋临床诊疗研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 8-17. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2024.01.002

    [2]

    肖志勇, 陈文倩, 苏雅妃, 等. 3592例新生儿听力筛查回顾性分析[J]. 中华耳科学杂志, 2018, 16(2): 253-257. doi: 10.3969/j.issn.1672-2922.2018.02.024

    [3]

    GBD 2019 Hearing Loss Collaborators. Hearing loss prevalence and years lived with disability, 1990-2019: findings from the Global Burden of Disease Study 2019[J]. Lancet, 2021, 397(10278): 996-1009. doi: 10.1016/S0140-6736(21)00516-X

    [4]

    Spedicati B, Santin A, Nardone GG, et al. The Enigmatic Genetic Landscape of Hereditary Hearing Loss: A Multistep Diagnostic Strategy in the Italian Population[J]. Biomedicines, 2023, 11(3): 703. doi: 10.3390/biomedicines11030703

    [5]

    张晓龙, 王洪阳, 李进, 等. KCNQ4基因新突变耳聋患者的基因型表型相关性分析及遗传咨询[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(1): 25-30. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.01.005

    [6]

    Song MH, Jung J, Rim JH, et al. Genetic Inheritance of Late-Onset, Down-Sloping Hearing Loss and Its Implications for Auditory Rehabilitation[J]. Ear Hear, 2020, 41(1): 114-124. doi: 10.1097/AUD.0000000000000734

    [7]

    Moon IS, Grant AR, Sagi V, et al. TMPRSS3 Gene Variants With Implications for Auditory Treatment and Counseling[J]. Front Genet, 2021, 12: 780874. doi: 10.3389/fgene.2021.780874

    [8]

    Nisenbaum E, Yan D, Shearer AE, et al. Genotype-Phenotype Correlations inTMPRSS3(DFNB10/DFNB8) with Emphasis on Natural History[J]. Audiol Neurootol, 2023, 28(6): 407-419. doi: 10.1159/000528766

    [9]

    Du W, Ergin V, Loeb C, et al. Rescue of auditory function by a single administration of AAV-TMPRSS3 gene therapy in aged mice of human recessive deafness DFNB8[J]. Mol Ther, 2023, 31(9): 2796-2810. doi: 10.1016/j.ymthe.2023.05.005

    [10]

    Lee SJ, Lee S, Han JH, et al. Structural analysis of pathogenic TMPRSS3 variants and their cochlear implantation outcomes of sensorineural hearing loss[J]. Gene, 2023, 865: 147335. doi: 10.1016/j.gene.2023.147335

    [11]

    Shearer AE, Tejani VD, Brown CJ, et al. In Vivo Electrocochleography in Hybrid Cochlear Implant Users Implicates TMPRSS3 in Spiral Ganglion Function[J]. Sci Rep, 2018, 8(1): 14165. doi: 10.1038/s41598-018-32630-9

    [12]

    Liu W, Löwenheim H, Santi PA, et al. Expression of trans-membrane serine protease 3(TMPRSS3) in the human organ of Corti[J]. Cell Tissue Res, 2018, 372(3): 445-456. doi: 10.1007/s00441-018-2793-2

    [13]

    Tang PC, Alex AL, Nie J, et al. Defective Tmprss3-Associated Hair Cell Degeneration in Inner Ear Organoids[J]. Stem Cell Reports, 2019, 13(1): 147-162. doi: 10.1016/j.stemcr.2019.05.014

    [14]

    Bademci G, Foster J 2nd, Mahdieh N, et al. Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort[J]. Genet Med, 2016, 18(4): 364-371. doi: 10.1038/gim.2015.89

    [15]

    Ray M, Sarkar S, Sable MN. Genetics Landscape of Nonsyndromic Hearing Loss in Indian Populations[J]. J Pediatr Genet, 2022, 11(1): 5-14. doi: 10.1055/s-0041-1740532

    [16]

    Gao X, Huang SS, Yuan YY, et al. Identification of TMPRSS3 as a Significant Contributor to Autosomal Recessive Hearing Loss in the Chinese Population[J]. Neural Plast, 2017, 2017: 3192090.

    [17]

    Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46(W1): W296-W303. doi: 10.1093/nar/gky427

    [18]

    Oza AM, DiStefano MT, Hemphill SE, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss[J]. Hum Mutat, 2018, 39(11): 1593-1613. doi: 10.1002/humu.23630

    [19]

    Zaepfel BL, Zhang Z, Maulding K, et al. UPF1 reduces C9orf72 HRE-induced neurotoxicity in the absence of nonsense-mediated decay dysfunction[J]. Cell Rep, 2021, 34(13): 108925. doi: 10.1016/j.celrep.2021.108925

    [20]

    Wong SH, Yen YC, Li SY, et al. Novel Mutations in the TMPRSS3 Gene may Contribute to Taiwanese Patients with Nonsyndromic Hearing Loss[J]. Int J Mol Sci, 2020, 21(7): 2382. doi: 10.3390/ijms21072382

    [21]

    Popov P, Bizin I, Gromiha M, et al. Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure[J]. PLoS One, 2019, 14(7): e0219452. doi: 10.1371/journal.pone.0219452

    [22]

    陈继跃, 冀飞, 王秋菊, 等. 基因诊断应用于听神经病患者人工耳蜗植入效果分析的意义[J]. 中华耳科学杂志, 2020, 18(2): 268-273. doi: 10.3969/j.issn.1672-2922.2020.02.009

    [23]

    Li X, Tan B, Wang X, et al. Identification of a complex genomic rearrangement in TMPRSS3 by massively parallel sequencing in Chinese cases with prelingual hearing loss[J]. Mol Genet Genomic Med, 2019, 7(6): e685. doi: 10.1002/mgg3.685

    [24]

    Gao X, Yuan YY, Wang GJ, et al. Novel Mutations and Mutation Combinations of TMPRSS3 Cause Various Phenotypes in One Chinese Family with Autosomal Recessive Hearing Impairment[J]. Biomed Res Int, 2017, 2017: 4707315.

    [25]

    Miyagawa M, Nishio SY, Sakurai Y, et al. The patients associated with TMPRSS3 mutations are good candidates for electric acoustic stimulation[J]. Ann Otol Rhinol Laryngol, 2015, 124(Suppl 1): 193S-204S.

    [26]

    Battelino S, Klancar G, Kovac J, et al. TMPRSS3 mutations in autosomal recessive nonsyndromic hearing loss[J]. Eur Arch Otorhinolaryngol, 2016, 273(5): 1151-1154.

    [27]

    Szabo R, Bugge TH. Membrane-anchored serine proteases as regulators of epithelial function[J]. Biochem Soc Trans, 2020, 48(2): 517-528.

    [28]

    Aaron KA, Pekrun K, Atkinson PJ, et al. Selection of viral capsids and promoters affects the efficacy of rescue of Tmprss3-deficient cochlea[J]. Mol Ther MethodsClin Dev, 2023, 30: 413-428.

    [29]

    Chen YS, Cabrera E, Tucker BJ, et al. TMPRSS3 expression is limited in spiral ganglion neurons: implication for successful cochlear implantation[J]. J Med Genet, 2022, 59(12): 1219-1226.

    [30]

    Holder JT, Morrel W, Rivas A, et al. Cochlear Implantation and Electric Acoustic Stimulation in Children With TMPRSS3 Genetic Mutation[J]. Otol Neurotol, 2021, 42(3): 396-401.

  • 加载中
计量
  • 文章访问数:  241
  • 施引文献:  0
出版历程
收稿日期:  2023-12-12
刊出日期:  2024-08-03

返回顶部

目录