基于转录组测序的变应性鼻炎研究进展

张皓翔, 王艳杰, 程冯丽, 等. 基于转录组测序的变应性鼻炎研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(6): 556-560. doi: 10.13201/j.issn.2096-7993.2024.06.019
引用本文: 张皓翔, 王艳杰, 程冯丽, 等. 基于转录组测序的变应性鼻炎研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(6): 556-560. doi: 10.13201/j.issn.2096-7993.2024.06.019
ZHANG Haoxiang, WANG Yanjie, CHENG Fengli, et al. Progress of allergic rhinitis research based on transcriptome sequencing[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(6): 556-560. doi: 10.13201/j.issn.2096-7993.2024.06.019
Citation: ZHANG Haoxiang, WANG Yanjie, CHENG Fengli, et al. Progress of allergic rhinitis research based on transcriptome sequencing[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(6): 556-560. doi: 10.13201/j.issn.2096-7993.2024.06.019

基于转录组测序的变应性鼻炎研究进展

  • 基金项目:
    国家自然科学基金(No:81870707,82171119,82201263,82171120);山西省基础研究计划青年项目(No:20210302124306);山西省卫生健康委员会科研课题(No:2021062);山西医科大学校级博士课题(No:XD2009);山西医科大学第二医院博士基金项目(No:202001-1)
详细信息
    通讯作者: 赵长青,E-mail:fahyj@126.com
  • 中图分类号: R765.21

Progress of allergic rhinitis research based on transcriptome sequencing

More Information
  • 目的: 传统研究变应性鼻炎(allergic rhinitis,AR)主要通过动物模型和分子生物学方法研究,转录组测序技术的诞生推进了AR基因层面的探索。近年来重点聚焦于常见RNA在AR中作用的研究,提示AR的生物信息学分析已取得突破性进展。本文拟综述AR研究进展、转录组测序技术的发展、转录组测序在AR中的应用等,以期为临床挖掘AR潜在的药物靶点,为精准治疗提供参考。
  • 加载中
  • [1]

    中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国变应性鼻炎诊断和治疗指南(2022年, 修订版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 8-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TNGZ202403016.htm

    [2]

    Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression[J]. Science, 1995, 270(5235): 484-487. doi: 10.1126/science.270.5235.484

    [3]

    Hutter C, Zenklusen JC. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data[J]. Cell, 2018, 173(2): 283-285. doi: 10.1016/j.cell.2018.03.042

    [4]

    Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update[J]. Nucleic Acids Res, 2013, 41(Database issue): D991-995.

    [5]

    Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia[J]. Nature, 2019, 569(7757): 503-508. doi: 10.1038/s41586-019-1186-3

    [6]

    Kim B, Lee YE, Yeon JW, et al. A novel therapeutic modality using CRISPR-engineered dendritic cells to treat allergies[J]. Biomaterials, 2021, 273: 120798. doi: 10.1016/j.biomaterials.2021.120798

    [7]

    Li Z, Zou W, Sun J, et al. A comprehensive gene expression profile of allergic rhinitis-derived nasal fibroblasts and the potential mechanism for its phenotype[J]. Hum Exp Toxicol, 2022, 41: 9603271211069038.

    [8]

    Lei Y, Guo P, An J, et al. Identification of pathogenic genes and upstream regulators in allergic rhinitis[J]. Int J Pediatr Otorhinolaryngol, 2018, 115: 97-103. doi: 10.1016/j.ijporl.2018.09.005

    [9]

    Zhang Y, Huang Y, Chen WX, et al. Identification of key genes in allergic rhinitis by bioinformatics analysis[J]. J Int Med Res, 2021, 49(7): 3000605211029521.

    [10]

    常文川, 许昱. 变应性鼻炎关键基因的生物信息学分析[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(5): 458-464. doi: 10.3760/cma.j.cn115330-20200123-00049

    [11]

    Ma Y, Shi L, Zheng C. Microarray analysis of lncRNA and mRNA expression profiles in mice with allergic rhinitis[J]. Int J Pediatr Otorhinolaryngol, 2018, 104: 58-65. doi: 10.1016/j.ijporl.2017.10.046

    [12]

    Zhang Q, Qin J, Zhong L, et al. CCL5-Mediated Th2 Immune Polarization Promotes Metastasis in Luminal Breast Cancer[J]. Cancer Res, 2015, 75(20): 4312-4321. doi: 10.1158/0008-5472.CAN-14-3590

    [13]

    Cabral MD, Paulet PE, Robert V, et al. Knocking down Cav1 calcium channels implicated in Th2 cell activation prevents experimental asthma[J]. Am J Respir Crit Care Med, 2010, 181(12): 1310-1317. doi: 10.1164/rccm.200907-1166OC

    [14]

    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. doi: 10.1016/0092-8674(93)90529-Y

    [15]

    Tost J. A translational perspective on epigenetics in allergic diseases[J]. J Allergy Clin Immunol, 2018, 142(3): 715-726. doi: 10.1016/j.jaci.2018.07.009

    [16]

    Ben-Hamo R, Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype[J]. Oncotarget, 2015, 6(3): 1594-1604. doi: 10.18632/oncotarget.2734

    [17]

    Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy[J]. Trends Mol Med, 2014, 20(8): 460-469. doi: 10.1016/j.molmed.2014.06.005

    [18]

    Churov AV, Oleinik EK, Knip M. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential[J]. Autoimmun Rev, 2015, 14(11): 1029-1037. doi: 10.1016/j.autrev.2015.07.005

    [19]

    Chapman CG, Pekow J. The emerging role of miRNAs in inflammatory bowel disease: a review[J]. Therap Adv Gastroenterol, 2015, 8(1): 4-22. doi: 10.1177/1756283X14547360

    [20]

    Liu X, Ren Y, Sun X, et al. Bioinformatics-Based Approaches Predict That MIR-17-5P Functions in the Pathogenesis of Seasonal Allergic Rhinitis Through Regulating ABCA1 and CD69[J]. Am J Rhinol Allergy, 2019, 33(3): 269-276. doi: 10.1177/1945892418823388

    [21]

    Deng YQ, Li S, Liang ZY, et al. Preliminary Study of microRNAs Allele-specific Targeting in Allergic Rhinitis Patients from Central China[J]. Comb Chem High Throughput Screen, 2022, 25(8): 1345-1354. doi: 10.2174/1386207324666210603112727

    [22]

    Jia M, Chu C, Wang M. Correlation of microRNA profiles with disease risk and severity of allergic rhinitis[J]. Int J Clin Exp Pathol, 2018, 11(3): 1791-1802.

    [23]

    Wang J, Yin J, Peng H, et al. MicroRNA-29 mediates anti-inflammatory effects and alleviation of allergic responses and symptoms in mice with allergic rhinitis[J]. Allergy Asthma Clin Immunol, 2021, 17(1): 24. doi: 10.1186/s13223-021-00527-4

    [24]

    Xiao L, Jiang L, Hu Q, et al. MiR-302e attenuates allergic inflammation in vitro model by targeting RelA[J]. Biosci Rep, 2018, 38(3): BSR20180025. doi: 10.1042/BSR20180025

    [25]

    Teng ZX, Zhou XC, Xu RT, et al. Tfh Exosomes Derived from Allergic Rhinitis Promote DC Maturation Through miR-142-5p/CDK5/STAT3 Pathway[J]. J Inflamm Res, 2022, 15: 3187-3205. doi: 10.2147/JIR.S365217

    [26]

    李依琳, 李勇, 杨烨, 等. 变应性鼻炎鼻黏膜组织中长链非编码RNA-RTL1表达及临床意义[J]. 中华临床免疫和变态反应杂志, 2021, 15(2): 144-149. doi: 10.3969/j.issn.1673-8705.2021.02.003

    [27]

    Wei X, Xu M, Wang C, et al. Genome-wide analysis of long noncoding RNA expression profile in nasal mucosa with allergic rhinitis[J]. BMC Med Genomics, 2021, 14(1): 100. doi: 10.1186/s12920-021-00949-4

    [28]

    Yang Y, Zhang Y, Yang Y, et al. Differential Expression of Long Noncoding RNAs and Their Function-Related mRNAs in the Peripheral Blood of Allergic Rhinitis Patients[J]. Am J Rhinol Allergy, 2020, 34(4): 508-518. doi: 10.1177/1945892420912164

    [29]

    Zhou Y, Chen X, Zheng Y, et al. Long Non-coding RNAs and mRNAs Expression Profiles of Monocyte-Derived Dendritic Cells From PBMCs in AR[J]. Front Cell Dev Biol, 2021, 9: 636477. doi: 10.3389/fcell.2021.636477

    [30]

    Pan Z, Li GF, Sun ML, et al. MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5[J]. J Neurosci, 2019, 39(11): 2125-2143. doi: 10.1523/JNEUROSCI.1631-18.2018

    [31]

    Zhang F, Zhang R, Zhang X, et al. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits[J]. Aging(Albany NY), 2018, 10(9): 2266-2283.

    [32]

    Chen J, Xiao X, He S, et al. Altered circular RNA expression profiles in an ovalbumin-induced murine model of allergic rhinitis[J]. Allergol Immunopathol(Madr), 2021, 49(2): 94-103. doi: 10.15586/aei.v49i2.33

    [33]

    Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7: 11215. doi: 10.1038/ncomms11215

    [34]

    Petkovic S, Müller S. RNA circularization strategies in vivo and in vitro[J]. Nucleic Acids Res, 2015, 43(4): 2454-2465. doi: 10.1093/nar/gkv045

    [35]

    Wang D, Li Z, Wu Y. The Research Progression and Clinical Significance of Circular RNAs in Head and Neck Cancers[J]. Biomed Res Int, 2020, 2020: 2712310.

    [36]

    Yin Y, Long J, He Q, et al. Emerging roles of circRNA in formation and progression of cancer[J]. J Cancer, 2019, 10(21): 5015-5021. doi: 10.7150/jca.30828

    [37]

    邱昌余, 陈若希, 程雷. 非编码RNA与变应性鼻炎的相关性及研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(5): 538-542. doi: 10.3760/cma.j.cn115330-20190322-00176

    [38]

    Qiu CY, Cui XY, Lu MP, et al. CircRNA expression profiles and circRNA-miRNA-mRNA crosstalk in allergic rhinitis[J]. World Allergy Organ J, 2021, 14(6): 100548. doi: 10.1016/j.waojou.2021.100548

    [39]

    Qi C, Jiang Y, Yang IV, et al. Nasal DNA methylation profiling of asthma and rhinitis[J]. J Allergy Clin Immunol, 2020, 145(6): 1655-1663. doi: 10.1016/j.jaci.2019.12.911

    [40]

    Yan Z, Liu L, Jiao L, et al. Bioinformatics Analysis and Identification of Underlying Biomarkers Potentially Linking Allergic Rhinitis and Asthma[J]. Med Sci Monit, 2020, 26: e924934.

    [41]

    彭杨, 李献清, 邱前辉. 应用功能分类基因芯片检测变应性鼻炎差异性表达基因[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(11): 869-872. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.1001-1781.2017.11.012

    [42]

    Giovannini-Chami L, Paquet A, Sanfiorenzo C, et al. The "one airway, one disease" concept in light of Th2 inflammation[J]. Eur Respir J, 2018, 52(4): 1800437. doi: 10.1183/13993003.00437-2018

    [43]

    Baschal EE, Larson ED, Bootpetch Roberts TC, et al. Identification of Novel Genes and Biological Pathways That Overlap in Infectious and Nonallergic Diseases of the Upper and Lower Airways Using Network Analyses[J]. Front Genet, 2019, 10: 1352.

    [44]

    Banerjee P, Balraj P, Ambhore NS, et al. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma[J]. Sci Rep, 2021, 11(1): 14386. doi: 10.1038/s41598-021-93845-x

    [45]

    García-Sánchez A, Estravís M, Martin MJ, et al. PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma[J]. J Pers Med, 2021, 11(9): 827. doi: 10.3390/jpm11090827

    [46]

    Wang M, Gong L, Luo Y, et al. Transcriptomic analysis of asthma and allergic rhinitis reveals CST1 as a biomarker of unified airways[J]. Front Immunol, 2023, 14: 1048195. doi: 10.3389/fimmu.2023.1048195

    [47]

    Lee K, Han MR, Yeon JW, et al. Whole Transcriptome Analysis of Myeloid Dendritic Cells Reveals Distinct Genetic Regulation in Patients with Allergies[J]. Int J Mol Sci, 2020, 21(22): 8640. doi: 10.3390/ijms21228640

    [48]

    Cheng J, Zhang M, Zheng Y, et al. Integrative analysis of network pharmacology and proteomics to identify key targets of Tuomin-Zhiti-Decoction for allergic rhinitis[J]. J Ethnopharmacol, 2022, 296: 115448. doi: 10.1016/j.jep.2022.115448

  • 加载中
WeChat 点击查看大图
计量
  • 文章访问数:  75
  • 施引文献:  0
出版历程
收稿日期:  2023-02-28
刊出日期:  2024-06-03

返回顶部

目录