脂肪间充质干细胞来源外泌体通过mTOR通路调节变应性鼻炎患者外周血Th2/Treg平衡

韩飞燕, 许肖杰, 王英. 脂肪间充质干细胞来源外泌体通过mTOR通路调节变应性鼻炎患者外周血Th2/Treg平衡[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(2): 140-145. doi: 10.13201/j.issn.2096-7993.2024.02.011
引用本文: 韩飞燕, 许肖杰, 王英. 脂肪间充质干细胞来源外泌体通过mTOR通路调节变应性鼻炎患者外周血Th2/Treg平衡[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(2): 140-145. doi: 10.13201/j.issn.2096-7993.2024.02.011
HAN Feiyan, XU Xiaojie, WANG Ying. Adipose-derived stem cell-derived exosomes regulate Th2/Treg balance in peripheral blood of AR patients through the mTOR pathway[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(2): 140-145. doi: 10.13201/j.issn.2096-7993.2024.02.011
Citation: HAN Feiyan, XU Xiaojie, WANG Ying. Adipose-derived stem cell-derived exosomes regulate Th2/Treg balance in peripheral blood of AR patients through the mTOR pathway[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(2): 140-145. doi: 10.13201/j.issn.2096-7993.2024.02.011

脂肪间充质干细胞来源外泌体通过mTOR通路调节变应性鼻炎患者外周血Th2/Treg平衡

  • 基金项目:
    2023年度河南省医学科技攻关计划项目(No:SBGJ202302064)
详细信息

Adipose-derived stem cell-derived exosomes regulate Th2/Treg balance in peripheral blood of AR patients through the mTOR pathway

More Information
  • 目的  探讨脂肪间充质干细胞来源外泌体(adipose-derived stem cell exosomes,ADSC-exos)调节变应性鼻炎(allergic rhinitis,AR)患者外周血Th2/Treg平衡的机制。 方法  选取2022年3月-2022年10月于郑州大学第一附属医院耳鼻咽喉头颈外科就诊的AR患者30例,再选择30例同期就诊的单纯鼻中隔偏曲患者作为对照组。期间收集所有患者的外周静脉血10 mL,采用ELISA检测法分析血浆中IL-4、TGF-β细胞因子水平,密度梯度离心法提取外周血单个核细胞(peripheral blood mononuclear cells,PBMCs)后进一步提取蛋白及RNA,行qRT-PCR检测IL-4、TGF-β、GATA3、Foxp3基因的表达水平,Western Blotting检测AR患者与对照者PBMCs中p-PI3K(P85)、p-AKT(Ser473)、p-mTOR(Ser2448)、p-p70S6K(Thr389)的蛋白表达水平,流式细胞术分析Th2和Treg细胞的比例。刺激分化AR患者的PBMCs,并与ADSC-exos共培养。Western Blotting检测外泌体处理组与未处理组p-PI3K(P85)、p-AKT(Ser473)、p-mTOR(Ser2448)及p-p70S6K(Thr389)蛋白的表达水平,流式细胞术分析Th2和Treg细胞的比例,ELISA检测细胞培养上清中IL-4、TGF-β的水平。 结果  AR组患者外周血中mTOR通路较对照组显著激活,血浆中IL-4水平较对照组升高,TGF-β水平较对照组降低,差异均有统计学意义(P<0.05)。AR组患者外周血Th2细胞比例较对照组升高,Treg细胞比例下降,差异有统计学意义(P<0.01)。外泌体处理组与未处理组比较,mTOR通路蛋白表达水平下降,IL-4水平下降,TGF-β水平升高; Th2细胞比例下降,Treg细胞比例升高(P<0.01)。 结论  AR患者外周血单个核细胞中存在Th2、Treg细胞的失衡,其外周血单个核细胞中PI3K/AKT/mTOR/p70S6K通路被激活,ADSC-exos可能通过PI3K/AKT/mTOR/p70S6K通路调节AR患者Th2/Treg的平衡。
  • 加载中
  • 图 1  外泌体的鉴定ADSC-Exos的电镜图片(比例尺=200 nm)

    图 2  AR患者外周血中Th2和Treg细胞失衡

    图 3  AR患者外周血PBMCs细胞中PI3K/AKT/mTOR/P70S6K信号通路被激活

    图 4  外泌体通过mTOR通路调控Th2和Treg细胞的平衡

  • [1]

    Fan Y, Piao CH, Hyeon E, et al. Gallic acid alleviates nasal inflammation via activation of Th1 and inhibition of Th2 and Th17 in a mouse model of allergic rhinitis[J]. Int Immunopharmacol, 2019, 70: 512-519. doi: 10.1016/j.intimp.2019.02.025

    [2]

    Wang YH, Liu YJ. The IL-17 cytokine family and their role in allergic inflammation[J]. Curr Opin Immunol, 2008, 20(6): 697-702. doi: 10.1016/j.coi.2008.09.004

    [3]

    Girtsman T, Jaffar Z, Ferrini M, et al. Natural Foxp3(+) regulatory T cells inhibit Th2 polarization but are biased toward suppression of Th17-driven lung inflammation[J]. J Leukoc Biol, 2010, 88(3): 537-546. doi: 10.1189/jlb.0110044

    [4]

    Roy A, Srivastava M, Saqib U, et al. Potential therapeutic targets for inflammation in toll-like receptor 4(TLR4)-mediated signaling pathways[J]. Int Immunopharmacol, 2016, 40: 79-89. doi: 10.1016/j.intimp.2016.08.026

    [5]

    Gao S, Zhang W, Zhao Q, et al. Curcumin ameliorates atherosclerosis in apolipoprotein E deficient asthmatic mice by regulating the balance of Th2/Treg cells[J]. Phytomedicine, 2019, 52: 129-135. doi: 10.1016/j.phymed.2018.09.194

    [6]

    Shao Y, Chong L, Lin P, et al. MicroRNA-133a alleviates airway remodeling in asthtama through PI3K/AKT/mTOR signaling pathway by targeting IGF1R[J]. J Cell Physiol, 2019, 234(4): 4068-4080. doi: 10.1002/jcp.27201

    [7]

    Zou W, Ding F, Niu C, et al. Brg1 aggravates airway inflammation in asthma via inhibition of the PI3K/Akt/mTOR pathway[J]. Biochem Biophys Res Commun, 2018, 503(4): 3212-3218. doi: 10.1016/j.bbrc.2018.08.127

    [8]

    Fan XL, Zeng QX, Li X, et al. Induced pluripotent stem cell-derived mesenchymal stem cells activate quiescent T cells and elevate regulatory T cell response via NF-κB in allergic rhinitis patients[J]. Stem Cell Res Ther, 2018, 9(1): 170. doi: 10.1186/s13287-018-0896-z

    [9]

    Cho KS, Park HK, Park HY, et al. IFATS collection: Immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model[J]. Stem Cells, 2009, 27(1): 259-265. doi: 10.1634/stemcells.2008-0283

    [10]

    Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1): 114-120. doi: 10.1016/j.yexcr.2017.12.021

    [11]

    潘志宇, 余少卿. 外泌体在变应性鼻炎发病机制中的研究进展[J]. 国际耳鼻咽喉头颈外科杂志, 2022, 46(2): 92-95.

    [12]

    Zhang Y, Zhang L. Prevalence of allergic rhinitis in china[J]. Allergy Asthma Immunol Res, 2014, 6(2): 105-113. doi: 10.4168/aair.2014.6.2.105

    [13]

    张珒珒, 崔晏文, 高亚东. 变应性鼻炎合并气道高反应性的风险因素研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(6): 457-462. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.06.010

    [14]

    Guo L, Huang Y, Chen X, et al. Innate immunological function of TH2 cells in vivo[J]. Nature Immunology, 2015, 16(10): 1051-1059. doi: 10.1038/ni.3244

    [15]

    Li J, Sha J, Sun L, et al. Contribution of Regulatory T Cell Methylation Modifications to the Pathogenesis of Allergic Airway Diseases[J]. J Immunol Res, 2021, 2021: 5590217.

    [16]

    Lin Y L, Shieh CC, Wang J Y. The functional insufficiency of human CD4+CD25 high T-regulatory cells in allergic asthma is subjected to TNF-alpha modulation[J]. Allergy, 2008, 63(1): 67-74. doi: 10.1111/j.1398-9995.2007.01526.x

    [17]

    Li P, Tsang MS, Kan LL, et al. The Immuno-Modulatory Activities of Pentaherbs Formula on Ovalbumin-Induced Allergic Rhinitis Mice via the Activation of Th1 and Treg Cells and Inhibition of Th2 and Th17 Cells[J]. Molecules, 2021, 27(1): 239. doi: 10.3390/molecules27010239

    [18]

    张芳, 刘海, 张建辉. 外泌体在变应性鼻炎中的研究进展[J]. 医学研究与战创伤救治, 2023, 36(2): 209-213.

    [19]

    Yao Y, Fan XL, Jiang D, et al. Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation[J]. Stem Cell Reports, 2018, 11(5): 1120-1135. doi: 10.1016/j.stemcr.2018.09.012

    [20]

    Lai RC, Yeo RW, Tan KH, et al. Exosomes for drug delivery-a novel application for the mesenchymal stem cell[J]. Biotechnol Adv, 2013, 31(5): 543-551. doi: 10.1016/j.biotechadv.2012.08.008

    [21]

    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484. doi: 10.1016/j.cell.2006.01.016

    [22]

    Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing[J]. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35. doi: 10.1038/nrm3025

    [23]

    Huang S. mTOR Signaling in Metabolism and Cancer[J]. Cells, 2020, 9(10): 2278. doi: 10.3390/cells9102278

    [24]

    Zhang Y, Jing Y, Qiao J, et al. Activation of the mTOR signaling pathway is required for asthma onset[J]. Sci Rep, 2017, 7(1): 4532. doi: 10.1038/s41598-017-04826-y

  • 加载中

(4)

计量
  • 文章访问数:  401
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2023-06-08
刊出日期:  2024-02-03

目录