慢性鼻窦炎伴鼻息肉中15-羟基前列腺素脱氢酶的表达及其调控机制研究

陈删, 陈敬彩, 陈建军, 等. 慢性鼻窦炎伴鼻息肉中15-羟基前列腺素脱氢酶的表达及其调控机制研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 891-896. doi: 10.13201/j.issn.2096-7993.2023.11.007
引用本文: 陈删, 陈敬彩, 陈建军, 等. 慢性鼻窦炎伴鼻息肉中15-羟基前列腺素脱氢酶的表达及其调控机制研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 891-896. doi: 10.13201/j.issn.2096-7993.2023.11.007
CHEN Shan, CHEN Jingcai, CHEN Jianjun, et al. Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(11): 891-896. doi: 10.13201/j.issn.2096-7993.2023.11.007
Citation: CHEN Shan, CHEN Jingcai, CHEN Jianjun, et al. Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(11): 891-896. doi: 10.13201/j.issn.2096-7993.2023.11.007

慢性鼻窦炎伴鼻息肉中15-羟基前列腺素脱氢酶的表达及其调控机制研究

  • 基金项目:
    国家重点研发计划(No:2022YFC2504100)
详细信息

Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps

More Information
  • 目的 研究伴鼻息肉的慢性鼻窦炎(chronic rhinosinusitis with nasal polyps,CRSwNP)患者鼻息肉中15-羟基前列腺素脱氢酶(15-hydroxyprostaglandin dehydrogenase,HPGD)的表达水平及其调控机制。方法 应用免疫荧光观察鼻息肉组织中HPGD表达的细胞类型,应用Western-Blot对鼻息肉组织中HPGD表达进行半定量分析。观察人源重组高迁移率家族蛋白1(high mobility group box-1,HMGB1)对人原代鼻黏膜上皮细胞中HPGD表达的作用,并利用晚期糖基化终末产物受体(receptor for advanced glycation end products,RAGE)中和抗体观察能否阻断HMGB1对HPGD的诱导作用。结果 各型CRSwNP患者中的HPGD表达水平增高,且定位于CD68阳性细胞及上皮细胞。人源重组HMGB1可刺激人原代鼻黏膜上皮细胞中HPGD表达增高,且呈时间依赖性,同时在12 h可观察到MEK的磷酸化水平增高及RAGE表达增高,但在24 h MEK磷酸化水平及RAGE表达趋于正常。利用RAGE中和抗体可部分阻断人源重组HMGB1对人原代鼻黏膜上皮细胞中HPGD的诱导作用。结论 CRSwNP中HPGD表达增高,且主要定位于巨噬细胞及上皮细胞。HMGB1通过RAGE-MEK信号通路调控HPGD表达,这可能为今后调控CRSwNP中PGE2水平提供了一个新的靶点。
  • 加载中
  • 图 1  CRSwNP中HPGD表达增高

    图 2  CRSwNP中各型巨噬细胞均表达HPGD表达增高且与RAGE共表达

    图 3  人重组HMGB1诱导原代鼻黏膜上皮细胞中HPGD表达

  • [1]

    Fokkens WJ, Lund VJ, Mullol J, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012[J]. Rhinol Suppl, 2012, 23: 1-298.

    [2]

    Zhang Y, Gevaert E, Lou H, et al. Chronic rhinosinusitis in Asia[J]. J Allergy Clin Immunol, 2017, 140(5): 1230-1239. doi: 10.1016/j.jaci.2017.09.009

    [3]

    DeConde AS, Mace JC, Levy JM, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3): 550-555. doi: 10.1002/lary.26391

    [4]

    Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases[J]. Clin Immunol, 2006, 119(3): 229-240. doi: 10.1016/j.clim.2006.01.016

    [5]

    Roca-Ferrer J, Pérez-Gonzalez M, Garcia-Garcia FJ, et al. Low prostaglandin E2 and cyclooxygenase expression in nasal mucosa fibroblasts of aspirin-intolerant asthmatics[J]. Respirology, 2013, 18(4): 711-717. doi: 10.1111/resp.12076

    [6]

    Miłoński J, Zielińska-Bliz ' niewska H, Przybyłowska K, et al. Significance of CYCLOOXYGENASE-2(COX-2), PERIOSTIN(POSTN)and INTERLEUKIN-4(IL-4) gene expression in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Eur Arch Otorhinolaryngol, 2015, 272(12): 3715-3720. doi: 10.1007/s00405-014-3481-9

    [7]

    Xie L, Liu AG, Peng LY, et al. Expression of E-prostanoid receptors in nasal polyp tissues of smoking and nonsmoking patients with chronic rhinosinusitis[J]. PLoS One, 2018, 13(7): e0200989. doi: 10.1371/journal.pone.0200989

    [8]

    Nordström A, Jangard M, Svedberg M, et al. Distinct eicosanoid patterns in severe recalcitrant nasal polyposis[J]. Int Forum Allergy Rhinol, 2023. doi: 10.1002/alr.23181.

    [9]

    Nomura T, Lu R, Pucci ML, et al. The two-step model of prostaglandin signal termination: in vitro reconstitution with the prostaglandin transporter and prostaglandin 15 dehydrogenase[J]. Mol Pharmacol, 2004, 65(4): 973-978. doi: 10.1124/mol.65.4.973

    [10]

    Okita RT, Okita JR. Prostaglandin-metabolizing enzymes during pregnancy: characterization of NAD(+)-dependent prostaglandin dehydrogenase, carbonyl reductase, and cytochrome P450-dependent prostaglandin omega-hydroxylase[J]. Crit Rev Biochem Mol Biol, 1996, 31(2): 101-126. doi: 10.3109/10409239609106581

    [11]

    Banks CA, Schlosser RJ, Wang EW, et al. Macrophage Infiltrate Is Elevated in CRSwNP Sinonasal Tissue Regardless of Atopic Status[J]. Otolaryngol Head Neck Surg, 2014, 151(2): 215-220. doi: 10.1177/0194599814528672

    [12]

    Krysko O, Holtappels G, Zhang N, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis[J]. Allergy, 2011, 66(3): 396-403. doi: 10.1111/j.1398-9995.2010.02498.x

    [13]

    Kang GJ, Lee HJ, Kang YP, et al. High-mobility group box 1 suppresses resolvin D1-induced phagocytosis via induction of resolvin D1-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase[J]. Biochim Biophys Acta, 2015, 1852(9): 1981-1988. doi: 10.1016/j.bbadis.2015.07.005

    [14]

    Cho H, Tai HH. Inhibition of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase(15-PGDH)by cyclooxygenase inhibitors and chemopreventive agents[J]. Prostaglandins Leukot Essent Fatty Acids, 2002, 67(6): 461-465. doi: 10.1054/plef.2002.0457

    [15]

    Sun CC, Zhou ZQ, Yang D, et al. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins[J]. Int Immunopharmacol, 2021, 101(Pt B): 108176.

    [16]

    Sagana RL, Yan M, Cornett AM, et al. Phosphatase and tensin homologue on chromosome 10(PTEN)directs prostaglandin E2-mediated fibroblast responses via regulation of E prostanoid 2 receptor expression[J]. J Biol Chem, 2009, 284(47): 32264-32271. doi: 10.1074/jbc.M109.004796

    [17]

    Sturm EM, Schratl P, Schuligoi R, et al. Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors[J]. J Immunol, 2008, 181(10): 7273-7283. doi: 10.4049/jimmunol.181.10.7273

    [18]

    Kay LJ, Yeo WW, Peachell PT. Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation[J]. Br J Pharmacol, 2006, 147(7): 707-713. doi: 10.1038/sj.bjp.0706664

    [19]

    Maric J, Ravindran A, Mazzurana L, et al. Prostaglandin E(2) suppresses human group 2 innate lymphoid cell function[J]. J Allergy Clin Immunol, 2018, 141(5): 1761-1773. e6. doi: 10.1016/j.jaci.2017.09.050

    [20]

    Pérez-Novo CA, Watelet JB, Claeys C, et al. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis[J]. J Allergy Clin Immunol, 2005, 115(6): 1189-1196. doi: 10.1016/j.jaci.2005.02.029

    [21]

    Sun YP, Oh SF, Uddin J, et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation[J]. J Biol Chem, 2007, 282(13): 9323-9334.

    [22]

    Levy BD. Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways[J]. Front Immunol, 2012, 3: 390.

    [23]

    Molaei E, Molaei A, Hayes AW, et al. Resolvin D1, therapeutic target in acute respiratory distress syndrome[J]. Eur J Pharmacol, 2021, 911: 174527. doi: 10.1016/j.ejphar.2021.174527

    [24]

    Chen D, Mao M, Bellussi LM, et al. Increase of high mobility group box chromosomal protein 1 in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2014, 4(6): 453-462. doi: 10.1002/alr.21294

    [25]

    Bellussi LM, Chen L, Chen D, et al. The role of High Mobility Group Box 1 chromosomal protein in the pathogenesis of chronic sinusitis and nasal polyposis[J]. Acta Otorhinolaryngol Ital, 2012, 32(6): 386-392.

    [26]

    Hirschi-Budge KM, Tsai K, Curtis KL, et al. RAGE signaling during tobacco smoke-induced lung inflammation and potential therapeutic utility of SAGEs[J]. BMC Pulm Med, 2022, 22(1): 160. doi: 10.1186/s12890-022-01935-x

  • 加载中

(3)

计量
  • 文章访问数:  656
  • PDF下载数:  151
  • 施引文献:  0
出版历程
收稿日期:  2023-08-28
修回日期:  2023-09-18
刊出日期:  2023-11-03

目录