空间组学技术在头颈部肿瘤个体化诊疗中的研究进展

徐晨阳, 王寅, 魏东敏, 等. 空间组学技术在头颈部肿瘤个体化诊疗中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(9): 729-733. doi: 10.13201/j.issn.2096-7993.2023.09.008
引用本文: 徐晨阳, 王寅, 魏东敏, 等. 空间组学技术在头颈部肿瘤个体化诊疗中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(9): 729-733. doi: 10.13201/j.issn.2096-7993.2023.09.008
XU Chenyang, WANG Yin, WEI Dongmin, et al. Advances of spatial omics in the individualized diagnosis and treatment of head and neck cancer[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(9): 729-733. doi: 10.13201/j.issn.2096-7993.2023.09.008
Citation: XU Chenyang, WANG Yin, WEI Dongmin, et al. Advances of spatial omics in the individualized diagnosis and treatment of head and neck cancer[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(9): 729-733. doi: 10.13201/j.issn.2096-7993.2023.09.008

空间组学技术在头颈部肿瘤个体化诊疗中的研究进展

  • 基金项目:
    国家自然科学基金资助项目(No:82071918)
详细信息

Advances of spatial omics in the individualized diagnosis and treatment of head and neck cancer

More Information
  • 空间组学是继单细胞测序技术之后的另一个生物技术研究热点,其能够弥补单细胞测序技术无法获取细胞空间分布信息的缺陷。空间组学主要研究细胞在组织样品中的相对位置关系,以揭示细胞空间分布关系对疾病的影响。近年来,空间组学在头颈肿瘤的发生机制、靶点探索、药物研发等诸多方面有了新的进展,本文围绕空间组学技术在头颈肿瘤诊疗多方面的最新进展做一概述。
  • 加载中
  • [1]

    Berthiller J, Straif K, Agudo A, et al. Low frequency of cigarette smoking and the risk of head and neck cancer in the INHANCE consortium pooled analysis[J]. Int J Epidemiol, 2016, 45(3): 835-845. doi: 10.1093/ije/dyv146

    [2]

    Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. doi: 10.1002/ijc.31937

    [3]

    Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium[J]. J Natl Cancer Inst, 2007, 99(10): 777-789. doi: 10.1093/jnci/djk179

    [4]

    Concu R, Cordeiro M. Cetuximab and the Head and Neck Squamous Cell Cancer[J]. Curr Top Med Chem, 2018, 18(3): 192-198. doi: 10.2174/1568026618666180112162412

    [5]

    李江, 张春叶. 口腔癌及口咽癌病理诊断规范[J]. 中国口腔颌面外科杂志, 2020, 18(4): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKQ202004001.htm

    [6]

    中华人民共和国国家卫生健康委员会医政医管局. 甲状腺癌诊疗指南(2022年版)[J]. 中国实用外科杂志, 2022, 42(12): 1343-1357, 1363. doi: 10.19538/j.cjps.issn1005-2208.2022.12.02

    [7]

    Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics[J]. Nat Rev Clin Oncol, 2015, 12(1): 11-26. doi: 10.1038/nrclinonc.2014.192

    [8]

    Yuan Z, Li Y, Shi M, et al. SOTIP is a versatile method for microenvironment modeling with spatial omics data[J]. Nat Commun, 2022, 13(1): 7330. doi: 10.1038/s41467-022-34867-5

    [9]

    Stuart T, Satija R. Integrative single-cell analysis[J]. Nat Rev Genet, 2019, 20(5): 257-272. doi: 10.1038/s41576-019-0093-7

    [10]

    Kashima Y, Sakamoto Y, Kaneko K, et al. Single-cell sequencing techniques from individual to multiomics analyses[J]. Exp Mol Med, 2020, 52(9): 1419-1427. doi: 10.1038/s12276-020-00499-2

    [11]

    Fang R, Xia C, Close JL, et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH[J]. Science, 2022, 377(6601): 56-62. doi: 10.1126/science.abm1741

    [12]

    Lewis SM, Asselin-Labat ML, Nguyen Q, et al. Spatial omics and multiplexed imaging to explore cancer biology[J]. Nat Methods, 2021, 18(9): 997-1012. doi: 10.1038/s41592-021-01203-6

    [13]

    Qi Z, Barrett T, Parikh AS, et al. Single-cell sequencing and its applications in head and neck cancer[J]. Oral Oncol, 2019, 99: 104441. doi: 10.1016/j.oraloncology.2019.104441

    [14]

    Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade[J]. Nat Med, 2019, 25(8): 1251-1259. doi: 10.1038/s41591-019-0522-3

    [15]

    Leung ML, Davis A, Gao R, et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer[J]. Genome Res, 2017, 27(8): 1287-1299. doi: 10.1101/gr.209973.116

    [16]

    Nichterwitz S, Chen G, Aguila Benitez J, et al. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling[J]. Nat Commun, 2016, 7: 12139. doi: 10.1038/ncomms12139

    [17]

    Burgess DJ. Spatial transcriptomics coming of age[J]. Nat Rev Genet, 2019, 20(6): 317. doi: 10.1038/s41576-019-0129-z

    [18]

    Chen KH, Boettiger AN, Moffitt JR, et al. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells[J]. Science, 2015, 348(6233): aaa6090. doi: 10.1126/science.aaa6090

    [19]

    Moffitt JR, Bambah-Mukku D, Eichhorn SW, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region[J]. Science, 2018, 362(6416): eaau5324. doi: 10.1126/science.aau5324

    [20]

    Ke R, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells[J]. Nat Methods, 2013, 10(9): 857-860. doi: 10.1038/nmeth.2563

    [21]

    Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2[J]. Nat Biotechnol, 2021, 39(3): 313-319. doi: 10.1038/s41587-020-0739-1

    [22]

    Vickovic S, Eraslan G, Salmén F, et al. High-definition spatial transcriptomics for in situ tissue profiling[J]. Nat Methods, 2019, 16(10): 987-990. doi: 10.1038/s41592-019-0548-y

    [23]

    Eltager M, Abdelaal T, Mahfouz A, et al. scMoC: single-cell multi-omics clustering[J]. Bioinform Adv, 2022, 2(1): vbac011. doi: 10.1093/bioadv/vbac011

    [24]

    Hernandez S, Lazcano R, Serrano A, et al. Challenges and Opportunities for Immunoprofiling Using a Spatial High-Plex Technology: The NanoString GeoMx® Digital Spatial Profiler[J]. Front Oncol, 2022, 12: 890410. doi: 10.3389/fonc.2022.890410

    [25]

    Tang Z, Zhang T, Yang B, et al. spaCI: deciphering spatial cellular communications through adaptive graph model[J]. Brief Bioinform, 2023, 24(1): bbac563. doi: 10.1093/bib/bbac563

    [26]

    Ståhl PL, Salmén F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics[J]. Science, 2016, 353(6294): 78-82. doi: 10.1126/science.aaf2403

    [27]

    Thrane K, Eriksson H, Maaskola J, et al. Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage Ⅲ Cutaneous Malignant Melanoma[J]. Cancer Res, 2018, 78(20): 5970-5979. doi: 10.1158/0008-5472.CAN-18-0747

    [28]

    Berglund E, Maaskola J, Schultz N, et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity[J]. Nat Commun, 2018, 9(1): 2419. doi: 10.1038/s41467-018-04724-5

    [29]

    Moncada R, Barkley D, Wagner F, et al. Author Correction: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas[J]. Nat Biotechnol, 2020, 38(12): 1476. doi: 10.1038/s41587-020-00776-5

    [30]

    Brooks JM, Menezes AN, Ibrahim M, et al. Development and Validation of a Combined Hypoxia and Immune Prognostic Classifier for Head and Neck Cancer[J]. Clin Cancer Res, 2019, 25(17): 5315-5328. doi: 10.1158/1078-0432.CCR-18-3314

    [31]

    Asp M, Giacomello S, Larsson L, et al. A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart[J]. Cell, 2019, 179(7): 1647-1660. doi: 10.1016/j.cell.2019.11.025

    [32]

    Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576-582. doi: 10.1038/nature14129

    [33]

    Keck MK, Zuo Z, Khattri A, et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes[J]. Clin Cancer Res, 2015, 21(4): 870-881. doi: 10.1158/1078-0432.CCR-14-2481

    [34]

    Schmitd LB, Perez-Pacheco C, Bellile EL, et al. Spatial and Transcriptomic Analysis of Perineural Invasion in Oral Cancer[J]. Clin Cancer Res, 2022, 28(16): 3557-3572. doi: 10.1158/1078-0432.CCR-21-4543

    [35]

    Zivraj KH, Tung YC, Piper M, et al. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs[J]. J Neurosci, 2010, 30(46): 15464-15478. doi: 10.1523/JNEUROSCI.1800-10.2010

    [36]

    Holt CE, Martin KC, Schuman EM. Local translation in neurons: visualization and function[J]. Nat Struct Mol Biol, 2019, 26(7): 557-566. doi: 10.1038/s41594-019-0263-5

    [37]

    Willis DE, van Niekerk EA, Sasaki Y, et al. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs[J]. J Cell Biol, 2007, 178(6): 965-980. doi: 10.1083/jcb.200703209

    [38]

    Mofatteh M. mRNA localization and local translation in neurons[J]. AIMS Neurosci, 2020, 7(3): 299-310. doi: 10.3934/Neuroscience.2020016

    [39]

    Thul P J, Åkesson L, Wiking M, et al. A subcellular map of the human proteome[J]. Science, 2017, 356(6340): eaal3321. doi: 10.1126/science.aal3321

    [40]

    Kretz R, Walter L, Raab N, et al. Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells[J]. Mol Cell Proteomics, 2022, 21(10): 100278. doi: 10.1016/j.mcpro.2022.100278

    [41]

    Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue[J]. Nat Biotechnol, 2020, 38(5): 586-599. doi: 10.1038/s41587-020-0472-9

    [42]

    Kulasinghe A, Taheri T, O'Byrne K, et al. Highly Multiplexed Digital Spatial Profiling of the Tumor Microenvironment of Head and Neck Squamous Cell Carcinoma Patients[J]. Front Oncol, 2020, 10: 607349.

    [43]

    Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2): 202-206. doi: 10.1038/s41588-018-0312-8

    [44]

    Patel R. MALDI-TOF MS for the diagnosis of infectious diseases[J]. Clin Chem, 2015, 61(1): 100-111. doi: 10.1373/clinchem.2014.221770

    [45]

    Ahmed M, Broeckx G, Baggerman G, et al. Next-generation protein analysis in the pathology department[J]. J Clin Pathol, 2020, 73(1): 1-6. doi: 10.1136/jclinpath-2019-205864

    [46]

    Wang N, Li X, Wang R, et al. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment[J]. Biotechnol J, 2021, 16(9): e2100041. doi: 10.1002/biot.202100041

    [47]

    Erich K, Reinle K, Müller T, et al. Spatial Distribution of Endogenous Tissue Protease Activity in Gastric Carcinoma Mapped by MALDI Mass Spectrometry Imaging[J]. Mol Cell Proteomics, 2019, 18(1): 151-161. doi: 10.1074/mcp.RA118.000980

    [48]

    Marko-Varga G, Fehniger TE, Rezeli M, et al. Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging[J]. J Proteomics, 2011, 74(7): 982-992. doi: 10.1016/j.jprot.2011.03.019

    [49]

    Chi LH, Chang WM, Chang YC, et al. Global Proteomics-based Identification and Validation of Thymosin Beta-4 X-Linked as a Prognostic Marker for Head and Neck Squamous Cell Carcinoma[J]. Sci Rep, 2017, 7(1): 9031. doi: 10.1038/s41598-017-09539-w

    [50]

    Piga I, Capitoli G, Clerici F, et al. Molecular trait of follicular-patterned thyroid neoplasms defined by MALDI-imaging[J]. Biochim Biophys Acta Proteins Proteom, 2020, 1868(11): 140511. doi: 10.1016/j.bbapap.2020.140511

    [51]

    王希, 汤冬娥, 蔡晚霞, 等. 空间代谢组学研究进展[J]. 临床医学工程, 2021, 28(S1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YBQJ2021S1009.htm

    [52]

    Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy[J]. Nat Rev Cancer, 2016, 16(11): 680-693. doi: 10.1038/nrc.2016.85

    [53]

    He MJ, Pu W, Wang X, et al. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metabolomics and Their Applications in Cancer Studies[J]. Front Oncol, 2022, 12: 891018. doi: 10.3389/fonc.2022.891018

    [54]

    Yang XH, Zhang XX, Jing Y, et al. Amino acids signatures of distance-related surgical margins of oral squamous cell carcinoma[J]. EBioMedicine, 2019, 48: 81-91. doi: 10.1016/j.ebiom.2019.10.005

    [55]

    Sun Y, Wang S, Zhang X, et al. Identification and Validation of PLOD2 as an Adverse Prognostic Biomarker for Oral Squamous Cell Carcinoma[J]. Biomolecules, 2021, 11(12): 1842. doi: 10.3390/biom11121842

    [56]

    Schmidt J, Kajtár B, Juhász K, et al. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry[J]. Oncotarget, 2020, 11(28): 2702-2717. doi: 10.18632/oncotarget.27649

    [57]

    Menetrey A, Legouffe R, Haouala A, et al. Tumor Distribution by Quantitative Mass Spectrometry Imaging of the Inhibitor of Apoptosis Protein Antagonist Xevinapant in Patients with Resectable Squamous Cell Carcinoma of the Head and Neck(EudraCT Number: 2014-004655-31)[J]. Anal Chem, 2022, 94(36): 12333-12341. doi: 10.1021/acs.analchem.2c00943

  • 加载中
计量
  • 文章访问数:  1339
  • PDF下载数:  532
  • 施引文献:  0
出版历程
收稿日期:  2023-06-20
刊出日期:  2023-09-03

目录