鼻黏膜温度变化与鼻气流感知之间的相关性研究进展

高翔, 武骏, 魏洪政, 等. 鼻黏膜温度变化与鼻气流感知之间的相关性研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(5): 401-406. doi: 10.13201/j.issn.2096-7993.2022.05.017
引用本文: 高翔, 武骏, 魏洪政, 等. 鼻黏膜温度变化与鼻气流感知之间的相关性研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(5): 401-406. doi: 10.13201/j.issn.2096-7993.2022.05.017
GAO Xiang, WU Jun, WEI Hongzheng, et al. Correlation between nasal mucosal temperature change and nasal airflow perception[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(5): 401-406. doi: 10.13201/j.issn.2096-7993.2022.05.017
Citation: GAO Xiang, WU Jun, WEI Hongzheng, et al. Correlation between nasal mucosal temperature change and nasal airflow perception[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(5): 401-406. doi: 10.13201/j.issn.2096-7993.2022.05.017

鼻黏膜温度变化与鼻气流感知之间的相关性研究进展

  • 基金项目:
    国家自然科学基金(No:81970866)
详细信息

Correlation between nasal mucosal temperature change and nasal airflow perception

More Information
  • 关于鼻气流感知的机制仍知之甚少,目前认为产生鼻腔通畅感的主要机制是激活鼻黏膜温度感受器瞬态受体电位M型家族成员8。计算流体力学研究表明,鼻腔增加的热流量与患者主观气流感知相关。同样,使用温度探头对鼻腔进行的物理测量显示较低的鼻黏膜温度与更好的气流感知之间存在相关性。三叉神经功能检测也间接证实了这一点。本研究旨在综述鼻黏膜温度变化在鼻腔通畅感知中的作用及其量化方法。
  • 加载中
  • [1]

    Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[J]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi: 10.1016/j.jaci.2017.03.050

    [2]

    Clark DW, Del Signore AG, Raithatha R, et al. Nasal airway obstruction: Prevalence and anatomic contributors[J]. Ear Nose Throat J, 2018, 97(6): 173-176. doi: 10.1177/014556131809700615

    [3]

    Wu J, He S, Li Y, et al. Evaluation of the clinical efficacy of nasal surgery in the treatment of obstructive sleep apnoea[J]. Am J Otolaryngol, 2022, 43(1): 103158. doi: 10.1016/j.amjoto.2021.103158

    [4]

    娄鸿飞, 黄嫣然, 张罗, 等. 干冷空气鼻激发试验诊断特发性鼻炎的研究[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(8): 673-677. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202008001.htm

    [5]

    Eguiluz-Gracia I, Testera-Montes A, Salas M, et al. Comparison of diagnostic accuracy of acoustic rhinometry and symptoms score for nasal allergen challenge monitoring[J]. Allergy, 2021, 76(1): 371-375. doi: 10.1111/all.14499

    [6]

    Pendolino AL, Nardello E, Lund VJ, et al. Comparison between unilateral PNIF and rhinomanometry in the evaluation of nasal cycle[J]. Rhinology, 2018, 56(2): 122-126. doi: 10.4193/Rhin17.168

    [7]

    韩德民, 王彤, 臧洪瑞. 三线减张鼻中隔矫正手术[J]. 中国医学文摘(耳鼻咽喉科学), 2009, 24(2): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYEB200902024.htm

    [8]

    王彤, 臧洪瑞, 李云川, 等. 三线减张法鼻中隔成形术的主观和客观疗效分析[J]. 中国耳鼻咽喉头颈外科, 2018, 25(5): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT201805008.htm

    [9]

    van Egmond M, Rovers MM, Tillema A, et al. Septoplasty for nasal obstruction due to a deviated nasal septum in adults: a systematic review[J]. Rhinology, 2018, 56(3): 195-208. doi: 10.4193/Rhin18.016

    [10]

    Zhao K, Blacker K, Luo Y, et al. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance[J]. PLoS One, 2011, 6(10): e24618. doi: 10.1371/journal.pone.0024618

    [11]

    Eccles R, Griffiths DH, Newton CG, et al. The effects of D and L isomers of menthol upon nasal sensation of airflow[J]. J Laryngol Otol, 1988, 102(6): 506-508. doi: 10.1017/S0022215100105481

    [12]

    Jones AS, Crosher R, Wight RG, et al. The effect of local anaesthesia of the nasal vestibule on nasal sensation of airflow and nasal resistance[J]. Clin Otolaryngol Allied Sci, 1987, 12(6): 461-464. doi: 10.1111/j.1365-2273.1987.tb00233.x

    [13]

    Tsavaler L, Shapero MH, Morkowski S, et al. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins[J]. Cancer Res, 2001, 61(9): 3760-3769.

    [14]

    Iftinca M, Altier C. The cool things to know about TRPM8![J]. Channels(Austin), 2020, 14(1): 413-420.

    [15]

    Keh SM, Facer P, Yehia A, et al. The menthol and cold sensation receptor TRPM8 in normal human nasal mucosa and rhinitis[J]. Rhinology, 2011, 49(4): 453-457. doi: 10.4193/Rhino11.089

    [16]

    Yao F, Ye Y, Zhou W. Nasal airflow engages central olfactory processing and shapes olfactory percepts[J]. Proc Biol Sci, 2020, 287(1937): 20201772.

    [17]

    Meusel T, Negoias S, Scheibe M, et al. Topographical differences in distribution and responsiveness of trigeminal sensitivity within the human nasal mucosa[J]. Pain, 2010, 151(2): 516-521. doi: 10.1016/j.pain.2010.08.013

    [18]

    Baraniuk JN. Pathogenic mechanisms of idiopathic nonallergic rhinitis[J]. World Allergy Organ J, 2009, 2(6): 106-114. doi: 10.1097/WOX.0b013e3181aadb16

    [19]

    黄嫣然, 娄鸿飞, 张罗. 干冷空气对鼻黏膜的影响[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201801015.htm

    [20]

    Gu Q, Lee LY. TRP channels in airway sensory nerves[J]. Neurosci Lett, 2021, 748: 135719. doi: 10.1016/j.neulet.2021.135719

    [21]

    Backaert W, Steelant B, Hellings PW, et al. A TRiP Through the Roles of Transient Receptor Potential Cation Channels in Type 2 Upper Airway Inflammation[J]. Curr Allergy Asthma Rep, 2021, 21(3): 20. doi: 10.1007/s11882-020-00981-x

    [22]

    Zhao K, Blacker K, Luo Y, et al. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance[J]. PLoS One, 2011, 6(10): e24618. doi: 10.1371/journal.pone.0024618

    [23]

    Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults[J]. Int Forum Allergy Rhinol, 2014, 4(6): 435-446. doi: 10.1002/alr.21319

    [24]

    Naftali S, Rosenfeld M, Wolf M, et al. The air-conditioning capacity of the human nose[J]. Ann Biomed Eng, 2005, 33(4): 545-553. doi: 10.1007/s10439-005-2513-4

    [25]

    Kim SK, Na Y, Kim JI, et al. Patient specific CFD models of nasal airflow: overview of methods and challenges[J]. J Biomech, 2013, 46(2): 299-306. doi: 10.1016/j.jbiomech.2012.11.022

    [26]

    Casey KP, Borojeni AA, Koenig LJ, et al. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution[J]. Otolaryngol Head Neck Surg, 2017, 156(4): 741-750. doi: 10.1177/0194599816687751

    [27]

    Li L, Han D, Zang H, et al. Aerodynamics Analysis of the Impact of Nasal Surgery on Patients with Obstructive Sleep Apnea and Nasal Obstruction[J]. ORL J Otorhinolaryngol Relat Spec, 2022, 84(1): 62-69. doi: 10.1159/000516243

    [28]

    Radulesco T, Meister L, Bouchet G, et al. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review[J]. Clin Otolaryngol, 2019, 44(5): 801-809. doi: 10.1111/coa.13396

    [29]

    Li L, Zang H, Han D, et al. Impact of a Concha Bullosa on Nasal Airflow Characteristics in the Setting of Nasal Septal Deviation: A Computational Fluid Dynamics Analysis[J]. Am J Rhinol Allergy, 2020, 34(4): 456-462. doi: 10.1177/1945892420905186

    [30]

    Senanayake P, Salati H, Wong E, et al. The impact of nasal adhesions on airflow and mucosal cooling-A computational fluid dynamics analysis[J]. Respir Physiol Neurobiol, 2021, 293: 103719. doi: 10.1016/j.resp.2021.103719

    [31]

    Kimbell JS, Frank DO, Laud P, et al. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction[J]. J Biomech, 2013, 46(15): 2634-2643. doi: 10.1016/j.jbiomech.2013.08.007

    [32]

    Zhao K, Jiang J, Blacker K, et al. Regional peak mucosal cooling predicts the perception of nasal patency[J]. Laryngoscope, 2014, 124(3): 589-595. doi: 10.1002/lary.24265

    [33]

    Sullivan CD, Garcia GJ, Frank-Ito DO, et al. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction[J]. Otolaryngol Head Neck Surg, 2014, 150(1): 139-147. doi: 10.1177/0194599813509776

    [34]

    Jones AS, Wight RG, Durham LH. The distribution of thermoreceptors within the nasal cavity[J]. Clin Otolaryngol Allied Sci, 1989, 14(3): 235-239. doi: 10.1111/j.1365-2273.1989.tb00367.x

    [35]

    Malik J, Spector BM, Wu Z, et al. Evidence of Nasal Cooling and Sensory Impairments Driving Patient Symptoms With Septal Deviation[J]. Laryngoscope, 2022, 132(3): 509-517. doi: 10.1002/lary.29673

    [36]

    Patel RG, Garcia GJ, Frank-Ito DO, et al. Simulating the nasal cycle with computational fluid dynamics[J]. Otolaryngol Head Neck Surg, 2015, 152(2): 353-360. doi: 10.1177/0194599814559385

    [37]

    Gaberino C, Rhee JS, Garcia GJ. Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency[J]. Respir Physiol Neurobiol, 2017, 238: 23-32. doi: 10.1016/j.resp.2017.01.004

    [38]

    Lindemann J, Leiacker R, Rettinger G, et al. Nasal mucosal temperature during respiration[J]. Clin Otolaryngol Allied Sci, 2002, 27(3): 135-139. doi: 10.1046/j.1365-2273.2002.00544.x

    [39]

    Lindemann J, Keck T, Scheithauer MO, et al. Nasal mucosal temperature in relation to nasal airflow as measured by rhinomanometry[J]. Am J Rhinol, 2007, 21(1): 46-49. doi: 10.2500/ajr.2007.21.2983

    [40]

    Willatt DJ, Jones AS. The role of the temperature of the nasal lining in the sensation of nasal patency[J]. Clin Otolaryngol Allied Sci, 1996, 21(6): 519-523. doi: 10.1111/j.1365-2273.1996.tb01102.x

    [41]

    Bailey RS, Casey KP, Pawar SS, et al. Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals[J]. JAMA Facial Plast Surg, 2017, 19(1): 46-52. doi: 10.1001/jamafacial.2016.1445

    [42]

    Jiang S, Chan J, Stupak HD. The Use of Infrared Thermal Imaging to Determine Functional Nasal Adequacy: A Pilot Study[J]. OTO Open, 2021, 5(3): 2473974X211045958.

    [43]

    Frasnelli J, Albrecht J, Bryant B, et al. Perception of specific trigeminal chemosensory agonists[J]. Neuroscience, 2011, 189: 377-383. doi: 10.1016/j.neuroscience.2011.04.065

    [44]

    Hummel T, Kaehling C, Grosse F. Automated assessment of intranasal trigeminal function[J]. Rhinology, 2016, 54(1): 27-31. doi: 10.4193/Rhino15.002

    [45]

    Scheibe M, Zahnert T, Hummel T. Topographical differences in the trigeminal sensitivity of the human nasal mucosa[J]. Neuroreport, 2006, 17(13): 1417-1420. doi: 10.1097/01.wnr.0000224764.61959.e8

    [46]

    Rombaux P, Guérit JM, Mouraux A. Lateralisation of intranasal trigeminal chemosensory event-related potentials[J]. Neurophysiol Clin, 2008, 38(1): 23-30. doi: 10.1016/j.neucli.2007.12.002

    [47]

    Saliba J, Fnais N, Tomaszewski M, et al. The role of trigeminal function in the sensation of nasal obstruction in chronic rhinosinusitis[J]. Laryngoscope, 2016, 126(5): E174-178. doi: 10.1002/lary.25952

    [48]

    Rombaux P, Mouraux A, Bertrand B, et al. Assessment of olfactory and trigeminal function using chemosensory event-related potentials[J]. Neurophysiol Clin, 2006, 36(2): 53-62. doi: 10.1016/j.neucli.2006.03.005

    [49]

    Scheibe M, Schulze S, Mueller CA, et al. Intranasal trigeminal sensitivity: measurements before and after nasal surgery[J]. Eur Arch Otorhinolaryngol, 2014, 271(1): 87-92. doi: 10.1007/s00405-013-2466-4

    [50]

    Bischoff S, Poletti SC, Kunz S, et al. Trigeminal endonasal perception-an outcome predictor for septoplasty[J]. Rhinology, 2020, 58(5): 437-443.

  • 加载中
计量
  • 文章访问数:  1322
  • PDF下载数:  684
  • 施引文献:  0
出版历程
收稿日期:  2021-07-30
刊出日期:  2022-05-03

目录