-
Abstract: The prevalence of allergic rhinitis(AR)is increasing year by year, which seriously affects the quality of life of patients and causes a heavy burden of social diseases. At present, the diagnosis methods focus on clinical manifestations and allergen detection, but there is no accurate detection method for early diagnosis and prognosis of the disease. With the rapid development of proteomics technology and its wide application in disease research, there is a rapid, sensitive and high-throughput technology platform for the diagnosis and treatment of allergic rhinitis, which provides a platform for the early detection, therapeutic targets and prognosis of the disease. This article reviews the progress of AR in proteomics.
-
Key words:
- rhinitis, allergic /
- proteomics /
- biomarkers
-
[1] Incorvaia C, Cavaliere C, Frati F, Masieri S. Allergic rhinitis[J]. Biol Regul Homeost Agents, 2018, 32(1): 61-66.
[2] Hoyte F, Nelson HS. Recent advances in allergic rhinitis[J]. F1000Res, 2018, 7.
[3] Yuan Z, Luo Z. Prevalence of Allergic Rhinitis in China[J]. Allergy Asthma Immunol Res, 2014, 6(2): 105-107. doi: 10.4168/aair.2014.6.2.105
[4] Cheng L, Chen J, Fu Q, et al. Chinese Society of Allergy Guidelines for Diagnosis and Treatment of Allergic Rhinitis[J]. Allergy Asthma Immunol Res, 2018, 10(4): 300-353. doi: 10.4168/aair.2018.10.4.300
[5] Khan DA. Allergic rhinitis and asthma: epidemiology and common pathophysiology[J]. Allergy Asthma Proc, 2014, 35(5): 357-361. doi: 10.2500/aap.2014.35.3794
[6] Schuler Iv CF, Montejo JM. Allergic Rhinitis in Children and Adolescents[J]. Pediatr Clin North Am, 2019, 66(5): 981-993. doi: 10.1016/j.pcl.2019.06.004
[7] Wallace DV, Dykewicz MS. Seasonal Allergic Rhinitis: A focused systematic review and practice parameter update[J]. Curr Opin Allergy Clin Immunol, 2017, 17(4): 286-294. doi: 10.1097/ACI.0000000000000375
[8] Campo P, Eguiluz-Gracia I, Bogas G, et al. Local allergic rhinitis: Implications for management[J]. Clin Exp Allergy, 2019, 49(1): 6-16. doi: 10.1111/cea.13192
[9] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(7): 1090-1094.
[10] Lindahl M, Ståhlbom B, Tagesson C. Two-dimensional gel electrophoresis of nasal and bronchoalveolar lavage fluids after occupational exposure[J]. Electrophoresis, 1995, 16(7): 1199-204.
[11] Mörtstedt H, Kåredal MH, Jönsson BA, et al. Screening method using selected reaction monitoring for targeted proteomics studies of nasal lavage fluid[J]. J Proteome Res, 2013, 12(1): 234-247. doi: 10.1021/pr300802g
[12] Rosenblatt KP, Bryant-Greenwood P, Killian JK, et al. Serum proteomics in cancer diagnosis and management[J]. Annu Rev Med, 2004, 55: 97-112. doi: 10.1146/annurev.med.55.091902.105237
[13] 陈敏, 李娜. AR和鼻息肉病患者血清蛋白质的差异表达[J]. 山东大学耳鼻喉眼学报, 2011, 25(2): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYU201102015.htm
[14] Chen X, Xie ZH, Lv YX, et al. A proteomics analysis reveals that A2M might be regulated by STAT3 in persistent allergic rhinitis[J]. Clin Exp Allergy, 2016, 46(6): 813-824. doi: 10.1111/cea.12711
[15] Chuang HY, Andrade JD. Immunochemical detection by specific antibody to thrombin of prothrombin conformational changes upon adsorption to artificial surfaces[J]. J Biomed Mater Res, 1985, 19(7): 813-825. doi: 10.1002/jbm.820190707
[16] Lee JH, Park KH, Kim HS, et al. Specific IgE measurement using AdvanSure® system: comparison of detection performance with ImmunoCAP® system in Korean allergy patients[J]. Clin Chim Acta, 2012, 413(9-10): 914-919. doi: 10.1016/j.cca.2012.02.018
[17] Ventura MT, Gelardi M, D'Amato A, et al. Clinical and cytologic characteristics of allergic rhinitis in elderly patients[J]. Ann Allergy Asthma Immunol, 2012, 108(3): 141-144. doi: 10.1016/j.anai.2012.01.013
[18] Shahali Y, Sutra JP, Haddad I, et al. Proteomics of cypress pollen allergens using double and triple one-dimensional electrophoresis[J]. Electrophoresis, 2012, 33(3): 462-469. doi: 10.1002/elps.201100324
[19] Nakamura M, Tsutsumi K, Ooka S, et al. Identification of beta-tubulin isoform V as an autoantigen in allergic rhinitis by a proteomic approach[J]. Microbiol Immunol, 2004, 48(5): 427-434. doi: 10.1111/j.1348-0421.2004.tb03532.x
[20] Blüggel M, Spertini F, Lutter P, et al. Toward protein biomarkers for allergy: CD4+ T cell proteomics in allergic and nonallergic subjects sampled in and out of pollen season[J]. J Proteome Res, 2011, 10(4): 1558-1570. doi: 10.1021/pr100939g
[21] Upton DC, Welham NV, Kuo JS, et al. Chronic rhinosinusitis with nasal polyps: a proteomic analysis[J]. Ann Otol Rhinol Laryngol, 2011, 120(12): 780-786. doi: 10.1177/000348941112001203
[22] Casado B, Pannell LK, Viglio S, et al. Analysis of the sinusitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization-quadrupole time of flight-tandem mass spectrometry[J]. Electrophoresis, 2004, 25(9): 1386-1393. doi: 10.1002/elps.200305862
[23] Choi GS, Shin SY, Kim JH, et al. Serum lactoferrin level as a serologic biomarker for allergic rhinitis[J]. Clin Exp Allergy, 2010, 40(3): 403-410. doi: 10.1111/j.1365-2222.2009.03414.x
[24] Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, et al. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes[J]. Molecules, 2021, 26(1).
[25] Cardona V, Luengo O, Labrador-Horrillo M. Immunotherapy in allergic rhinitis and lower airway outcomes[J]. Allergy, 2017, 72(1): 35-42. doi: 10.1111/all.12989
[26] Ma TT, Cao MD, Yu RL, et al. Leukotriene A4 Hydrolase Is a Candidate Predictive Biomarker for Successful Allergen Immunotherapy[J]. Front Immunol, 2020, 11: 559746. doi: 10.3389/fimmu.2020.559746
[27] Caillot N, Bouley J, Jain K, et al. Sialylated Fetuin-A as a candidate predictive biomarker for successful grass pollen allergen immunotherapy[J]. J Allergy Clin Immunol, 2017, 140(3): 759-770. e13. doi: 10.1016/j.jaci.2016.10.036
[28] 江银丽, 朱新华, 唐思艺, 等. AR冲击免疫治疗血清差异蛋白表达及机制研究[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(8): 683-689. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202008003.htm
[29] Lee SN, Ahn JS, Lee SG, et al. Integrins αvβ5 and αvβ6 Mediate IL-4-induced Collective Migration in Human Airway Epithelial Cells[J]. Am J Respir Cell Mol Biol, 2019, 60(4): 420-433. doi: 10.1165/rcmb.2018-0081OC
[30] Kim YS, Han D, Kim J, et al. In-Depth, Proteomic Analysis of Nasal Secretions from Patients With Chronic Rhinosinusitis and Nasal Polyps[J]. Allergy Asthma Immunol Res, 2019, 11(5): 691-708. doi: 10.4168/aair.2019.11.5.691
[31] Kao SS, Bassiouni A, Ramezanpour M, et al. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2021, 147(1): 168-178. doi: 10.1016/j.jaci.2020.06.037
[32] Bryborn M, Adner M, Cardell LO. Psoriasin, one of several new proteins identified in nasal lavage fluid from allergic and non-allergic individuals using 2-dimensional gel electrophoresis and mass spectrometry[J]. Respir Res, 2015, 6(1): 118.
[33] Tomazic PV, Darnhofer B, Birner-Gruenberger R. Nasal mucus proteome and its involvement in allergic rhinitis[J]. Expert Rev Proteomics, 2020, 17(3): 191-199. doi: 10.1080/14789450.2020.1748502
[34] Benson LM, Mason CJ, Friedman O, et al. Extensive fractionation and identification of proteins within nasal lavage fluids from allergic rhinitis and asthmatic chronic rhinosinusitis patients[J]. J Sep Sci, 2009, 32(1): 44-56. doi: 10.1002/jssc.200800474
[35] Zimmermann B, Tkalčec Z, Mešić A, et al. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen[J]. PLoS One, 2015, 10(4): e0124240. doi: 10.1371/journal.pone.0124240
[36] Lindahl M, Hlbom B, Tagesson C. Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight[J]. Electrophoresis, 2001, 22(9) : 1795. doi: 10.1002/1522-2683(200105)22:9<1795::AID-ELPS1795>3.0.CO;2-J
[37] Ghafouri B, Irander K, Lindbom J, et al. Comparative proteomics of nasal fluid in seasonal allergic rhinitis[J]. J Proteome Res, 2006, 5(2): 330-338. doi: 10.1021/pr050341h
[38] Raftery MJ, Saldanha RG, Geczy CL, et al. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates[J]. Respir Res, 2003, 4: 10. doi: 10.1186/1465-9921-4-10
[39] Lca B. Approach to Patients with Allergic Rhinitis: Testing and Treatment-ScienceDirect[J]. Medical Clinics of North America, 2020, 104(2): 77-94.
[40] Wang H, Gottfries J, Barrenäs F, et al. Identification of novel biomarkers in seasonal allergic rhinitis by combining proteomic, multivariate and pathway analysis[J]. PLoS One, 2011, 6(8): e23563. doi: 10.1371/journal.pone.0023563
[41] Wang H, Chavali S, Mobini R, et al. A pathway-based approach to find novel markers of local glucocorticoid treatment in intermittent allergic rhinitis[J]. Allergy, 2011, 66(1): 132-140. doi: 10.1111/j.1398-9995.2010.02444.x
[42] Agnihotri NT, McGrath KG. Allergic and nonallergic rhinitis[J]. Allergy Asthma Proc, 2019, 40(6): 376-379. doi: 10.2500/aap.2019.40.4251
[43] Astafieva NG, Baranov AA, Vishneva EA, et al. Allergic rhinitis[J]. Rossiiskaya Rinologiya, 2020, 28(4): 246. doi: 10.17116/rosrino202028041246
[44] Zhou F, Liu P, Lv H, et al. miR-31 attenuates murine allergic rhinitis by suppressing interleukin-13-induced nasal epithelial inflammatory responses[J]. Mol Med Rep, 2021, 23(1).
[45] Channaveerappa D, Ngounou Wetie AG, Darie CC. Bottlenecks in Proteomics: An Update[J]. Adv Exp Med Biol, 2019, 1140: 753-769.
[46] Pietrowska M, Wlosowicz A, Gawin M, et al. MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal[J]. Adv Exp Med Biol, 2019, 1073: 57-76.
计量
- 文章访问数: 1256
- PDF下载数: 572
- 施引文献: 0