Research progress in CT-based radiomics constructing hypopharyngeal cancer and multisystem tumor prediction model
-
Abstract: Radiomics, a technique for quantitative analysis of tumor imaging information through high-throughput extraction, uses a non-invasive way to capture a large number of internal heterogeneity characteristics of tumors, providing imaging basis for tumor staging and typing, tumor invasion site and distant metastasis, postoperative induction chemotherapy and prognosis, and providing new ideas and new thinking for the field of personalized precision medicine of tumors. This review aims to briefly summarize the latest research progress of imaging omics in the diagnosis and treatment design of head and neck tumor, and to discuss the research progress of constructing the treatment plan and prognosis evaluation model of hypopharyngeal cancer based on imaging omics, and to predict and forecast its development direction and clinical application.
-
Key words:
- hypopharyngeal neoplasms /
- head and neck neoplasms /
- radiomics /
- computed tomography /
- prognosis /
- treatment
-
[1] Lambin P, Leijenaar R, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. doi: 10.1038/nrclinonc.2017.141
[2] Haider SP, Burtness B, Yarbrough WG, et al. Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas[J]. Cancers Head Neck, 2020, 5: 6. doi: 10.1186/s41199-020-00053-7
[3] Petersen JF, Timmermans AJ, van Dijk B, et al. Trends in treatment, incidence and survival of hypopharynx cancer: a 20-year population-based study in the Netherlands[J]. Eur Arch Otorhinolaryngol, 2018, 275(1): 181-189. doi: 10.1007/s00405-017-4766-6
[4] Kılıç S, Kılıç SS, Hsueh WD, et al. Radiotherapy modality as a predictor of survival in hypopharyngeal cancer[J]. Head Neck, 2018, 40(11): 2441-2448. doi: 10.1002/hed.25360
[5] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[6] Chow L. Head and Neck Cancer[J]. N Engl J Med, 2020, 382(1): 60-72. doi: 10.1056/NEJMra1715715
[7] Wen Q, Yang Z, Dai H, et al. Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features[J]. Front Oncol, 2021, 11: 620246. doi: 10.3389/fonc.2021.620246
[8] Yang B, Zhou L, Zhong J, et al. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer[J]. Respir Res, 2021, 22(1): 189. doi: 10.1186/s12931-021-01780-2
[9] Weng Q, Hui J, Wang H, et al. Radiomic Feature-Based Nomogram: A Novel Technique to Predict EGFR-Activating Mutations for EGFR Tyrosin Kinase Inhibitor Therapy[J]. Front Oncol, 2021, 11: 590937. doi: 10.3389/fonc.2021.590937
[10] Zhang T, Xu Z, Liu G, et al. Simultaneous Identification of EGFR, KRAS, ERBB2, and TP53 Mutations in Patients with Non-Small Cell Lung Cancer by Machine Learning-Derived Three-Dimensional Radiomics[J]. Cancers(Basel), 2021, 13(8).
[11] Chen Y, Wei K, Liu D, et al. A Machine Learning Model for Predicting a Major Response to Neoadjuvant Chemotherapy in Advanced Gastric Cancer[J]. Front Oncol, 2021, 11: 675458. doi: 10.3389/fonc.2021.675458
[12] Li Y, Cheng Z, Gevaert O, et al. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer[J]. Chin J Cancer Res, 2020, 32(1): 62-71. doi: 10.21147/j.issn.1000-9604.2020.01.08
[13] Sellami S, Bourbonne V, Hatt M, et al. Predicting response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images[J]. Acta Oncol, 2021: 1-8.
[14] Wang CY, Ginat DT. Preliminary Computed Tomography Radiomics Model for Predicting Pretreatment CD8+ T-Cell Infiltration Status for Primary Head and Neck Squamous Cell Carcinoma[J]. J Comput Assist Tomogr, 2021, 45(4): 629-636. doi: 10.1097/RCT.0000000000001149
[15] Cohen N, Fedewa S, Chen AY. Epidemiology and Demographics of the Head and Neck Cancer Population[J]. Oral Maxillofac Surg Clin North Am, 2018, 30(4): 381-395. doi: 10.1016/j.coms.2018.06.001
[16] 吴钟凯, 刘业海, 张亮, 等. 术前颈胸增强CT和CTA在颈根部不同肿瘤手术方式选择中的意义[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202101006.htm
[17] Liu X, Maleki F, Muthukrishnan N, et al. Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models[J]. Cancers(Basel), 2021, 13(15).
[18] 董研博, 张奥博, 张金刚, 等. 基于影像组学的头颈部鳞状细胞癌研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(2): 181-184. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202102025.htm
[19] Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(4): 284-296. doi: 10.3322/caac.21456
[20] Lydiatt WM, Patel SG, O'Sullivan B, et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual[J]. CA Cancer J Clin, 2017, 67(2): 122-137. doi: 10.3322/caac.21389
[21] Gu J, Zhu J, Qiu Q, et al. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning-Based Radiomics[J]. AJR Am J Roentgenol, 2019, 213(6): 1348-1357. doi: 10.2214/AJR.19.21626
[22] Lu W, Zhong L, Dong D, et al. Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma[J]. Eur J Radiol, 2019, 118: 231-238. doi: 10.1016/j.ejrad.2019.07.018
[23] Zhou Y, Su GY, Hu H, et al. Radiomics analysis of dual-energy CT-derived iodine maps for diagnosing metastatic cervical lymph nodes in patients with papillary thyroid cancer[J]. Eur Radiol, 2020, 30(11): 6251-6262. doi: 10.1007/s00330-020-06866-x
[24] Chen YP, Chan A, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi: 10.1016/S0140-6736(19)30956-0
[25] Liang ZG, Tan HQ, Zhang F, et al. Comparison of radiomics tools for image analyses and clinical prediction in nasopharyngeal carcinoma[J]. Br J Radiol, 2019, 92(1102): 20190271. doi: 10.1259/bjr.20190271
[26] Zhu C, Huang H, Liu X, et al. A Clinical-Radiomics Nomogram Based on Computed Tomography for Predicting Risk of Local Recurrence After Radiotherapy in Nasopharyngeal Carcinoma[J]. Front Oncol, 2021, 11: 637687. doi: 10.3389/fonc.2021.637687
[27] Blanchard P, Lee A, Marguet S, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis[J]. Lancet Oncol, 2015, 16(6): 645-655. doi: 10.1016/S1470-2045(15)70126-9
[28] Peng H, Dong D, Fang MJ, et al. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma[J]. Clin Cancer Res, 2019, 25(14): 4271-4279. doi: 10.1158/1078-0432.CCR-18-3065
[29] Yang Y, Wang M, Qiu K, et al. Computed tomography-based deep-learning prediction of induction chemotherapy treatment response in locally advanced nasopharyngeal carcinoma[J]. Strahlenther Onkol, 2021.
[30] Yan C, Shen DS, Chen XB, et al. CT-Based Radiomics Nomogram for Prediction of Progression-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma[J]. Cancer Manag Res, 2021, 13: 6911-6923. doi: 10.2147/CMAR.S325373
[31] Xu H, Lv W, Feng H, et al. Subregional Radiomics Analysis of PET/CT Imaging with Intratumor Partitioning: Application to Prognosis for Nasopharyngeal Carcinoma[J]. Mol Imaging Biol, 2020, 22(5): 1414-1426. doi: 10.1007/s11307-019-01439-x
[32] Peng L, Hong X, Yuan Q, et al. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal[18F]FDG PET/CT images[J]. Ann Nucl Med, 2021, 35(4): 458-468. doi: 10.1007/s12149-021-01585-9
[33] Du D, Feng H, Lv W, et al. Machine Learning Methodsfor Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images[J]. Mol Imaging Biol, 2020, 22(3): 730-738. doi: 10.1007/s11307-019-01411-9
[34] Moro J, Maroneze MC, Ardenghi TM, et al. Oral and oropharyngeal cancer: epidemiology and survival analysis[J]. Einstein(Sao Paulo), 2018, 16(2): eAO4248.
[35] Kędzierawski P, Huruk-Kuchinka A, Radowicz-Chil A, et al. Human papillomavirus infection predicts a better survival rate in patients with oropharyngeal cancer[J]. Arch Med Sci, 2021, 17(5): 1308-1316. doi: 10.5114/aoms.2019.83658
[36] Bagher-Ebadian H, Lu M, Siddiqui F, et al. Application of radiomics for the prediction of HPV status for patients with head and neck cancers[J]. Med Phys, 2020, 47(2): 563-575. doi: 10.1002/mp.13977
[37] Reiazi R, Arrowsmith C, Welch M, et al. Prediction of Human Papillomavirus(HPV)Association of Oropharyngeal Cancer(OPC)Using Radiomics: The Impact of the Variation of CT Scanner[J]. Cancers(Basel), 2021, 13(9).
[38] Rich B, Huang J, Yang Y, et al. Radiomics Predicts for Distant Metastasis in Locally Advanced Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma[J]. Cancers(Basel), 2021, 13(22).
[39] Song B, Yang K, Garneau J, et al. Radiomic Features Associated With HPV Status on Pretreatment Computed Tomography in Oropharyngeal Squamous Cell Carcinoma Inform Clinical Prognosis[J]. Front Oncol, 2021, 11: 744250. doi: 10.3389/fonc.2021.744250
[40] Choi Y, Nam Y, Jang J, et al. Prediction of Human Papillomavirus Status and Overall Survival in Patients with Untreated Oropharyngeal Squamous Cell Carcinoma: Development and Validation of CT-Based Radiomics[J]. AJNR Am J Neuroradiol, 2020, 41(10): 1897-1904. doi: 10.3174/ajnr.A6756
[41] Li W, Wei D, Wushouer A, et al. Discovery and Validation of a CT-Based Radiomic Signature for Preoperative Prediction of Early Recurrence in Hypopharyngeal Carcinoma[J]. Biomed Res Int, 2020, 2020: 4340521.
[42] Guo R, Guo J, Zhang L, et al. CT-based radiomics features in the prediction of thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma[J]. Cancer Imaging, 2020, 20(1): 81. doi: 10.1186/s40644-020-00359-2
[43] Mo X, Wu X, Dong D, et al. Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation[J]. Eur Radiol, 2020, 30(2): 833-843. doi: 10.1007/s00330-019-06452-w
[44] Bahig H, Lapointe A, Bedwani S, et al. Dual-energy computed tomography for prediction of loco-regional recurrence after radiotherapy in larynx and hypopharynx squamous cell carcinoma[J]. Eur J Radiol, 2019, 110: 1-6. doi: 10.1016/j.ejrad.2018.11.005
[45] Chen RY, Lin YC, Shen WC, et al. Associations of Tumor PD-1 Ligands, Immunohistochemical Studies, and Textural Features in 18F-FDG PET in Squamous Cell Carcinoma of the Head and Neck[J]. Sci Rep, 2018, 8(1): 105. doi: 10.1038/s41598-017-18489-2
计量
- 文章访问数: 1460
- PDF下载数: 687
- 施引文献: 0