-
Abstract: Radiomics refers to extract advanced quantitative features in radiological images in a high-throughput way, to invert the features into extensible data with the help of mathematical algorithms, and to establish descriptive and predictive models of tumors. It has important value in the diagnosis, treatment and prognosis of tumors. As an entirely new field, radiomics becomes the research hotspot of clinical medicine and biomedical engineering because of its objective, holistic, non-invasive characteristics. Head and neck squamous cell cancer is one of the common malignant tumors. Radiomics is gradually applied to the study of head and neck squamous cell cancer. This article reviews the research progress of radiomics and its application in head and neck cancer.
-
Key words:
- radiomics /
- head and neck neoplasms /
- carcinoma, squamous cell /
- imaging /
- predictive model
-
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. doi: 10.3322/caac.21590
[2] 乐慧君, 陈思宇, 李芸, 等. 喉癌诊疗策略及进展[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(11): 1017-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201911003.htm
[3] Gatta G, Botta L, Sánchez MJ, et al. Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000 s: The EUROCARE-5 population-based study[J]. Eur J Cancer, 2015, 51(15): 2130-2143. doi: 10.1016/j.ejca.2015.07.043
[4] Forastiere AA, Ismaila N, Lewin JS, et al. Use of Larynx-Preservation Strategies in the Treatment of Laryngeal Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update[J]. J Clin Oncol, 2018, 36(11): 1143-1169. doi: 10.1200/JCO.2017.75.7385
[5] Steuer CE, El-Deiry M, Parks JR, et al. An update on larynx cancer[J]. CA Cancer J Clin, 2017, 67(1): 31-50. doi: 10.3322/caac.21386
[6] Ghi MG, Paccagnella A, Ferrari D, et al. Induction TPF followed by concomitant treatment versus concomitant treatment alone in locally advanced head and neck cancer. A phase Ⅱ-Ⅲ trial[J]. Ann Oncol, 2017, 28(9): 2206-2212. doi: 10.1093/annonc/mdx299
[7] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. doi: 10.1016/j.ejca.2011.11.036
[8] Yip SS, Aerts HJ. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-166. doi: 10.1088/0031-9155/61/13/R150
[9] Andronesi OC, Kim GS, Gerstner E, et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy[J]. Sci Transl Med, 2012, 4(116): 116ra4.
[10] Diehn M, Nardini C, Wang DS, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules[J]. Proc Natl Acad Sci U S A, 2008, 105(13): 5213-5218. doi: 10.1073/pnas.0801279105
[11] 张劲松, 尚磊, 叶菁, 等. 幕上IDH突变型低级别胶质瘤MRI特征与病理相关研究[J]. 中华神经外科疾病研究杂志, 2016, 15(2): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWK201602013.htm
[12] Ghosh P, Tamboli P, Vikram R, et al. Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features[J]. J Med Imaging(Bellingham), 2015, 2(4): 041009. doi: 10.1117/1.JMI.2.4.041009
[13] Pinker K, Shitano F, Sala E, et al. Background, current role, and potential applications of radiogenomics[J]. J Magn Reson Imaging, 2018, 47(3): 604-620. doi: 10.1002/jmri.25870
[14] Zhu Y, Mohamed A, Lai SY, et al. Imaging-Genomic Study of Head and Neck Squamous Cell Carcinoma: Associations Between Radiomic Phenotypes and Genomic Mechanisms via Integration of The Cancer Genome Atlas and The Cancer Imaging Archive[J]. JCO Clin Cancer Inform, 2019, 3: 1-9.
[15] Buch K, Fujita A, Li B, et al. Using Texture Analysis to Determine Human Papillomavirus Status of Oropharyngeal Squamous Cell Carcinomas on CT[J]. AJNR Am J Neuroradiol, 2015, 36(7): 1343-1348. doi: 10.3174/ajnr.A4285
[16] FujitaA, Buch K, Li B, et al. Difference Between HPV-Positive and HPV-Negative Non-Oropharyngeal Head and Neck Cancer: Texture Analysis Features on CT[J]. J Comput Assist Tomogr, 2016, 40(1): 43-47. doi: 10.1097/RCT.0000000000000320
[17] Vallieres M, Kumar A, Sultanem K, et al. FDG-PET Image-Derived Features Can Determine HPV Status in Head-and-Neck Cancer[J]. Int J Radiation Oncol Biol Physics, 2013, Suppl: S467.
[18] Dang M, Lysack JT, Wu T, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma[J]. AJNR Am J Neuroradiol, 2015, 36(1): 166-170. doi: 10.3174/ajnr.A4110
[19] Kann BH, Aneja S, Loganadane GV, et al. Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks[J]. Sci Rep, 2018, 8(1): 14036. doi: 10.1038/s41598-018-32441-y
[20] Chen L, Zhou Z, Sher D, et al. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer[J]. Phys Med Biol, 2019, 64(7): 075011. doi: 10.1088/1361-6560/ab083a
[21] Bogowicz M, Tanadini-Lang S, Guckenberger M, et al. Combined CT radiomics of primary tumor and metastatic lymph nodes improves prediction of loco-regional control in head and neck cancer[J]. Sci Rep, 2019, 9(1): 15198. doi: 10.1038/s41598-019-51599-7
[22] Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006. doi: 10.1038/ncomms5006
[23] Leijenaar RT, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma[J]. Acta Oncol, 2015, 54(9): 1423-1429. doi: 10.3109/0284186X.2015.1061214
[24] Zhang H, Graham CM, Elci O, et al. Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent prediction of overall survival in patients treated with induction chemotherapy[J]. Radiology, 2013, 269(3): 801-809. doi: 10.1148/radiol.13130110
[25] Diamant A, Chatterjee A, Vallières M, et al. Deep learning in head & neck cancer outcome prediction[J]. Sci Rep, 2019, 9(1): 2764. doi: 10.1038/s41598-019-39206-1
[26] Zhai TT, Langendijk JA, van Dijk LV, et al. The prognostic value of CT-based image-biomarkers for head and neck cancer patients treated with definitive(chemo-)radiation[J]. Oral Oncol, 2019, 95: 178-186. doi: 10.1016/j.oraloncology.2019.06.020
[27] Lv W, Ashrafinia S, Ma J, et al. Multi-Level Multi-Modality Fusion Radiomics: Application to PET and CT Imaging for Prognostication of Head and Neck Cancer[J]. IEEE J Biomed Health Inform, 2020, 24(8): 2268-2277. doi: 10.1109/JBHI.2019.2956354
[28] Ulrich EJ, Menda Y, Boles Ponto LL, et al. FLT PET Radiomics for Response Prediction to Chemoradiation Therapy in Head and Neck Squamous Cell Cancer[J]. Tomography, 2019, 5(1): 161-169. doi: 10.18383/j.tom.2018.00038
[29] Ou D, Blanchard P, Rosellini S, et al. Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status[J]. Oral Oncol, 2017, 71: 150-155. doi: 10.1016/j.oraloncology.2017.06.015
[30] Thor M, Tyagi N, Hatzoglou V, et al. A Magnetic Resonance Imaging-based approach to quantify radiation-induced normal tissue injuries applied to trismus in head and neck cancer[J]. Phys Imaging Radiat Oncol, 2017, 1: 34-40. doi: 10.1016/j.phro.2017.02.006
[31] Sheikh K, Lee SH, Cheng Z, et al. Predicting acute radiation induced xerostomia in head and neck Cancer using MR and CT Radiomics of parotid and submandibular glands[J]. Radiat Oncol, 2019, 14(1): 131. doi: 10.1186/s13014-019-1339-4
计量
- 文章访问数: 1393
- PDF下载数: 811
- 施引文献: 0