抗菌肽和抗菌蛋白在慢性鼻窦炎中的作用

黄嫣然, 王明, 王成硕, 等. 抗菌肽和抗菌蛋白在慢性鼻窦炎中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(2): 185-188. doi: 10.13201/j.issn.2096-7993.2021.02.022
引用本文: 黄嫣然, 王明, 王成硕, 等. 抗菌肽和抗菌蛋白在慢性鼻窦炎中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(2): 185-188. doi: 10.13201/j.issn.2096-7993.2021.02.022
HUANG Yanran, WANG Ming, WANG Chengshuo, et al. Antimicrobial peptides and proteins in chronic rhinosinusitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(2): 185-188. doi: 10.13201/j.issn.2096-7993.2021.02.022
Citation: HUANG Yanran, WANG Ming, WANG Chengshuo, et al. Antimicrobial peptides and proteins in chronic rhinosinusitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(2): 185-188. doi: 10.13201/j.issn.2096-7993.2021.02.022

抗菌肽和抗菌蛋白在慢性鼻窦炎中的作用

  • 基金项目:
    教育部长江学者及创新团队发展计划(No:IRT13082);国家自然科学基金重点项目(No:81630023);国家自然科学基金重点国际合作研究项目(No:81420108009)
详细信息

Antimicrobial peptides and proteins in chronic rhinosinusitis

More Information
  • 加载中
  • [1]

    Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities[J]. Allergy, 2015, 70(5): 533-539. doi: 10.1111/all.12577

    [2]

    肖仪, 罗慧文, 吴健, 等. 非嗜酸粒细胞及嗜酸粒细胞型慢性鼻窦炎伴鼻息肉的临床特征研究[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(7): 607-610. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201907008.htm

    [3]

    DeConde AS, Mace JC, Levy JM, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3): 550-555. doi: 10.1002/lary.26391

    [4]

    Yip J, Monteiro E, Chan Y. Endotypes of chronic rhinosinusitis[J]. Curr Opin Otolaryngol Head Neck Surg, 2019, 27(1): 14-19. doi: 10.1097/MOO.0000000000000503

    [5]

    Stevens WW, Peters AT, Tan BK, et al. Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820. e3. doi: 10.1016/j.jaip.2019.05.009

    [6]

    Bachert C, Marple B, Hosemann W, et al. Endotypes of Chronic Rhinosinusitis with Nasal Polyps: Pathology and Possible Therapeutic Implications[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1514-1519. doi: 10.1016/j.jaip.2020.03.007

    [7]

    Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464.

    [8]

    Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system[J]. Semin Immunopathol, 2007, 29(1): 27-43. doi: 10.1007/s00281-007-0064-5

    [9]

    Ganz T. Antimicrobial polypeptides[J]. J Leukoc Biol, 2004, 75(1): 34-38. doi: 10.1189/jlb.0403150

    [10]

    Sibila O, Perea L, Cantó E, et al. Antimicrobial peptides, disease severity and exacerbations in bronchiectasis[J]. Thorax, 2019, 74(9): 835-842. doi: 10.1136/thoraxjnl-2018-212895

    [11]

    Ramanathan M Jr, Lee WK, Spannhake EW, et al. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells[J]. Am J Rhinol, 2008, 22(2): 115-121. doi: 10.2500/ajr.2008.22.3136

    [12]

    Harder J, Gläser R, Schröder JM. Human antimicrobial proteins effectors of innate immunity[J]. J Endotoxin Res, 2007, 13(6): 317-338. doi: 10.1177/0968051907088275

    [13]

    Wang G. Human antimicrobial peptides and proteins[J]. Pharmaceuticals(Basel), 2014, 7(5): 545-594. doi: 10.3390/ph7050545

    [14]

    杨凤娟, 甘卫刚, 刘锋, 等. 鼻腔菌群多样性与慢性鼻窦炎伴鼻息肉手术预后相关性分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(9): 799-804. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202009008.htm

    [15]

    Lee SH, Kim JE, Lim HH, et al. Antimicrobial defensin peptides of the human nasal mucosa[J]. Ann Otol Rhinol Laryngol, 2002, 111(2): 135-141. doi: 10.1177/000348940211100205

    [16]

    Ooi EH, Wormald PJ, Carney AS, et al. Human cathelicidin antimicrobial peptide is up-regulated in the eosinophilic mucus subgroup of chronic rhinosinusitis patients[J]. Am J Rhinol, 2007, 21(4): 395-401. doi: 10.2500/ajr.2007.21.3048

    [17]

    Ooi EH, Wormald PJ, Tan LW. Innate immunity in the paranasal sinuses: a review of nasal host defenses[J]. Am J Rhinol, 2008, 22(1): 13-19. doi: 10.2500/ajr.2008.22.3127

    [18]

    Cole AM, Liao HI, Stuchlik O, et al. Cationic polypeptides are required for antibacterial activity of human airway fluid[J]. J Immunol, 2002, 169(12): 6985-6991. doi: 10.4049/jimmunol.169.12.6985

    [19]

    Claeys S, de Belder T, Holtappels G, et al. Human beta-defensins and toll-like receptors in the upper airway[J]. Allergy, 2003, 58(8): 748-753. doi: 10.1034/j.1398-9995.2003.00180.x

    [20]

    Niyonsaba F, Nagaoka I, Ogawa H, et al. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems[J]. Curr Pharm Des, 2009, 15(21): 2393-2413. doi: 10.2174/138161209788682271

    [21]

    Niyonsaba F, Nagaoka I, Ogawa H. Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties[J]. Crit Rev Immunol, 2006, 26(6): 545-576. doi: 10.1615/CritRevImmunol.v26.i6.60

    [22]

    Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases[J]. Clin Exp Allergy, 2016, 46(12): 1522-1530. doi: 10.1111/cea.12843

    [23]

    Hirschberg A, Kiss M, Kadocsa E, et al. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis[J]. Eur Arch Otorhinolaryngol, 2016, 273(7): 1779-1788. doi: 10.1007/s00405-015-3816-1

    [24]

    Chen PH, Fang SY. Expression of human beta-defensin 2 in human nasal mucosa[J]. Eur Arch Otorhinolaryngol, 2004, 261(5): 238-241. doi: 10.1007/s00405-003-0682-z

    [25]

    Thienhaus ML, Wohlers J, Podschun R, et al. Antimicrobial peptides in nasal secretion and mucosa with respect to Staphylococcus aureus colonization in chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2011, 49(5): 554-561.

    [26]

    Lee JT, Escobar OH, Anouseyan R, et al. Assessment of epithelial innate antimicrobial factors in sinus tissue from patients with and without chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2014, 4(11): 893-900. doi: 10.1002/alr.21404

    [27]

    Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications[J]. Curr Opin Hematol, 2009, 16(1): 41-47. doi: 10.1097/MOH.0b013e32831ac517

    [28]

    Yim S, Dhawan P, Ragunath C, et al. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1, 25-dihydroxyvitamin D(3)[J]. J Cyst Fibros, 2007, 6(6): 403-410. doi: 10.1016/j.jcf.2007.03.003

    [29]

    Sultan B, Ramanathan M Jr, Lee J, et al. Sinonasal epithelial cells synthesize active vitamin D, augmenting host innate immune function[J]. Int Forum Allergy Rhinol, 2013, 3(1): 26-30. doi: 10.1002/alr.21087

    [30]

    Ooi EH, Wormald PJ, Carney AS, et al. Fungal allergens induce cathelicidin LL-37 expression in chronic rhinosinusitis patients in a nasal explant model[J]. Am J Rhinol, 2007, 21(3): 367-372. doi: 10.2500/ajr.2007.21.3025

    [31]

    Cao Y, Chen F, Sun Y, et al. LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2019, 49(7): 990-999. doi: 10.1111/cea.13408

    [32]

    Seshadri S, Lin DC, Rosati M, et al. Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis[J]. Allergy, 2012, 67(7): 920-928. doi: 10.1111/j.1398-9995.2012.02848.x

    [33]

    Thaikoottathil JV, Martin RJ, Di PY, et al. SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice[J]. Am J Respir Cell Mol Biol, 2012, 47(2): 253-260. doi: 10.1165/rcmb.2012-0064OC

    [34]

    Liu Y, Bartlett JA, Di ME, et al. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection[J]. Am J Pathol, 2013, 182(5): 1519-1531. doi: 10.1016/j.ajpath.2013.01.050

    [35]

    Yeh TH, Lee SY, Hsu WC. Expression of SPLUNC1 protein in nasal polyp epithelial cells in air-liquid interface culture treated with IL-13[J]. Am J Rhinol Allergy, 2010, 24(1): 17-20. doi: 10.2500/ajra.2010.24.3381

    [36]

    屈纪富, 江德鹏. 分泌性白细胞蛋白酶抑制因子在创伤愈合中的潜在应用前景[J]. 创伤外科杂志, 2009, 11(5): 471-473. doi: 10.3969/j.issn.1009-4237.2009.05.031

    [37]

    Zani ML, Tanga A, Saidi A, et al. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions[J]. Biochem Soc Trans, 2011, 39(5): 1441-1446. doi: 10.1042/BST0391441

    [38]

    Dong D, Yulin Z, Yan X, et al. Enhanced expressions of lysozyme, SLPI and glycoprotein 340 in biofilm-associated chronic rhinosinusitis[J]. Eur Arch Otorhinolaryngol, 2014, 271(6): 1563-1571. doi: 10.1007/s00405-013-2758-8

    [39]

    Singh PK, Tack BF, McCray PB Jr, et al. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid[J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(5): L799-805. doi: 10.1152/ajplung.2000.279.5.L799

    [40]

    Abbinante-Nissen JM, Simpson LG, Leikauf GD. Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells[J]. Am J Physiol, 1995, 268(4 Pt 1): L601-606.

    [41]

    van Wetering S, van der Linden AC, van Sterkenburg MA, et al. Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins[J]. Am J Physiol Lung Cell Mol Physiol, 2000, 278(1): L51-58. doi: 10.1152/ajplung.2000.278.1.L51

    [42]

    Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2009, 124(1): 37-42. doi: 10.1016/j.jaci.2009.04.045

    [43]

    Seshadri S, Rosati M, Lin DC, et al. Regional differences in the expression of innate host defense molecules in sinonasal mucosa[J]. J Allergy Clin Immunol, 2013, 132(5): 1227-1230. e5. doi: 10.1016/j.jaci.2013.05.042

    [44]

    Acıo lu E, Yigit O, Alkan Z, et al. The effects of corticosteroid on tissue lactoferrin in patients with nasal polyposis[J]. Am J Rhinol Allergy, 2012, 26(1): e28-31. doi: 10.2500/ajra.2012.26.3735

    [45]

    Woods CM, Lee VS, Hussey DJ, et al. Lysozyme expression is increased in the sinus mucosa of patients with chronic rhinosinusitis[J]. Rhinology, 2012, 50(2): 147-156. doi: 10.4193/Rhino11.229

    [46]

    Kalfa VC, Spector SL, Ganz T, et al. Lysozyme levels in the nasal secretions of patients with perennial allergic rhinitis and recurrent sinusitis[J]. Ann Allergy Asthma Immunol, 2004, 93(3): 288-292. doi: 10.1016/S1081-1206(10)61503-7

    [47]

    Laudien M, Dressel S, Harder J, et al. Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion[J]. Rhinology, 2011, 49(1): 107-111. doi: 10.4193/Rhino10.036

    [48]

    Wang K, Chen L, Wang Y, et al. Sphenopalatine Ganglion Acupuncture Improves Nasal Ventilation and Modulates Autonomic Nervous Activity in Healthy Volunteers: A Randomized Controlled Study[J]. Sci Rep, 2016, 6: 29947. doi: 10.1038/srep29947

    [49]

    McMahon DB, Carey RM, Kohanski MA, et al. Neuropeptide regulation of secretion and inflammation in human airway gland serous cells[J]. Eur Respir J, 2020, 55(4): 1901386. doi: 10.1183/13993003.01386-2019

  • 加载中
计量
  • 文章访问数:  1268
  • PDF下载数:  276
  • 施引文献:  0
出版历程
收稿日期:  2020-02-17
刊出日期:  2021-02-05

目录