-
Abstract: The pathogenesis of chronic rhinosinusitis(CRS) is closely related to the interactions between the environmental stimuli and the innate defense system. A vast of defensive molecules, such as antimicrobial peptides and proteins(AMPs) could be secreted by the airway epithelial cells and submucosal glands. As an essential component of innate immune system, AMPs are associated with multiple airway disease, such as CRS, chronic obstructive pulmonary disease, bronchiectasis, allergic asthma and so on. AMPs are expressed vastly in nasal mucosa and could exert fundamental antibacterial and inflamatory regulative functions. However, the pathophysiological mechanism of AMPs in CRS is still unclear. What's more, the heterogeneity among studies is relatively high. Thus, the paper was aimed to review the potential function and inflammatory regulation of AMPs in CRS. More rigorous studies with larger samples are needed in the future, to shed light on its possible pathogeneisis mechanisms.
-
Key words:
- sinusitis /
- antimicrobial peptide /
- antimicrobial protein /
- innate immune
-
[1] Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities[J]. Allergy, 2015, 70(5): 533-539. doi: 10.1111/all.12577
[2] 肖仪, 罗慧文, 吴健, 等. 非嗜酸粒细胞及嗜酸粒细胞型慢性鼻窦炎伴鼻息肉的临床特征研究[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(7): 607-610. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201907008.htm
[3] DeConde AS, Mace JC, Levy JM, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3): 550-555. doi: 10.1002/lary.26391
[4] Yip J, Monteiro E, Chan Y. Endotypes of chronic rhinosinusitis[J]. Curr Opin Otolaryngol Head Neck Surg, 2019, 27(1): 14-19. doi: 10.1097/MOO.0000000000000503
[5] Stevens WW, Peters AT, Tan BK, et al. Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820. e3. doi: 10.1016/j.jaip.2019.05.009
[6] Bachert C, Marple B, Hosemann W, et al. Endotypes of Chronic Rhinosinusitis with Nasal Polyps: Pathology and Possible Therapeutic Implications[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1514-1519. doi: 10.1016/j.jaip.2020.03.007
[7] Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464.
[8] Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system[J]. Semin Immunopathol, 2007, 29(1): 27-43. doi: 10.1007/s00281-007-0064-5
[9] Ganz T. Antimicrobial polypeptides[J]. J Leukoc Biol, 2004, 75(1): 34-38. doi: 10.1189/jlb.0403150
[10] Sibila O, Perea L, Cantó E, et al. Antimicrobial peptides, disease severity and exacerbations in bronchiectasis[J]. Thorax, 2019, 74(9): 835-842. doi: 10.1136/thoraxjnl-2018-212895
[11] Ramanathan M Jr, Lee WK, Spannhake EW, et al. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells[J]. Am J Rhinol, 2008, 22(2): 115-121. doi: 10.2500/ajr.2008.22.3136
[12] Harder J, Gläser R, Schröder JM. Human antimicrobial proteins effectors of innate immunity[J]. J Endotoxin Res, 2007, 13(6): 317-338. doi: 10.1177/0968051907088275
[13] Wang G. Human antimicrobial peptides and proteins[J]. Pharmaceuticals(Basel), 2014, 7(5): 545-594. doi: 10.3390/ph7050545
[14] 杨凤娟, 甘卫刚, 刘锋, 等. 鼻腔菌群多样性与慢性鼻窦炎伴鼻息肉手术预后相关性分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(9): 799-804. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202009008.htm
[15] Lee SH, Kim JE, Lim HH, et al. Antimicrobial defensin peptides of the human nasal mucosa[J]. Ann Otol Rhinol Laryngol, 2002, 111(2): 135-141. doi: 10.1177/000348940211100205
[16] Ooi EH, Wormald PJ, Carney AS, et al. Human cathelicidin antimicrobial peptide is up-regulated in the eosinophilic mucus subgroup of chronic rhinosinusitis patients[J]. Am J Rhinol, 2007, 21(4): 395-401. doi: 10.2500/ajr.2007.21.3048
[17] Ooi EH, Wormald PJ, Tan LW. Innate immunity in the paranasal sinuses: a review of nasal host defenses[J]. Am J Rhinol, 2008, 22(1): 13-19. doi: 10.2500/ajr.2008.22.3127
[18] Cole AM, Liao HI, Stuchlik O, et al. Cationic polypeptides are required for antibacterial activity of human airway fluid[J]. J Immunol, 2002, 169(12): 6985-6991. doi: 10.4049/jimmunol.169.12.6985
[19] Claeys S, de Belder T, Holtappels G, et al. Human beta-defensins and toll-like receptors in the upper airway[J]. Allergy, 2003, 58(8): 748-753. doi: 10.1034/j.1398-9995.2003.00180.x
[20] Niyonsaba F, Nagaoka I, Ogawa H, et al. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems[J]. Curr Pharm Des, 2009, 15(21): 2393-2413. doi: 10.2174/138161209788682271
[21] Niyonsaba F, Nagaoka I, Ogawa H. Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties[J]. Crit Rev Immunol, 2006, 26(6): 545-576. doi: 10.1615/CritRevImmunol.v26.i6.60
[22] Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases[J]. Clin Exp Allergy, 2016, 46(12): 1522-1530. doi: 10.1111/cea.12843
[23] Hirschberg A, Kiss M, Kadocsa E, et al. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis[J]. Eur Arch Otorhinolaryngol, 2016, 273(7): 1779-1788. doi: 10.1007/s00405-015-3816-1
[24] Chen PH, Fang SY. Expression of human beta-defensin 2 in human nasal mucosa[J]. Eur Arch Otorhinolaryngol, 2004, 261(5): 238-241. doi: 10.1007/s00405-003-0682-z
[25] Thienhaus ML, Wohlers J, Podschun R, et al. Antimicrobial peptides in nasal secretion and mucosa with respect to Staphylococcus aureus colonization in chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2011, 49(5): 554-561.
[26] Lee JT, Escobar OH, Anouseyan R, et al. Assessment of epithelial innate antimicrobial factors in sinus tissue from patients with and without chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2014, 4(11): 893-900. doi: 10.1002/alr.21404
[27] Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications[J]. Curr Opin Hematol, 2009, 16(1): 41-47. doi: 10.1097/MOH.0b013e32831ac517
[28] Yim S, Dhawan P, Ragunath C, et al. Induction of cathelicidin in normal and CF bronchial epithelial cells by 1, 25-dihydroxyvitamin D(3)[J]. J Cyst Fibros, 2007, 6(6): 403-410. doi: 10.1016/j.jcf.2007.03.003
[29] Sultan B, Ramanathan M Jr, Lee J, et al. Sinonasal epithelial cells synthesize active vitamin D, augmenting host innate immune function[J]. Int Forum Allergy Rhinol, 2013, 3(1): 26-30. doi: 10.1002/alr.21087
[30] Ooi EH, Wormald PJ, Carney AS, et al. Fungal allergens induce cathelicidin LL-37 expression in chronic rhinosinusitis patients in a nasal explant model[J]. Am J Rhinol, 2007, 21(3): 367-372. doi: 10.2500/ajr.2007.21.3025
[31] Cao Y, Chen F, Sun Y, et al. LL-37 promotes neutrophil extracellular trap formation in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2019, 49(7): 990-999. doi: 10.1111/cea.13408
[32] Seshadri S, Lin DC, Rosati M, et al. Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis[J]. Allergy, 2012, 67(7): 920-928. doi: 10.1111/j.1398-9995.2012.02848.x
[33] Thaikoottathil JV, Martin RJ, Di PY, et al. SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice[J]. Am J Respir Cell Mol Biol, 2012, 47(2): 253-260. doi: 10.1165/rcmb.2012-0064OC
[34] Liu Y, Bartlett JA, Di ME, et al. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection[J]. Am J Pathol, 2013, 182(5): 1519-1531. doi: 10.1016/j.ajpath.2013.01.050
[35] Yeh TH, Lee SY, Hsu WC. Expression of SPLUNC1 protein in nasal polyp epithelial cells in air-liquid interface culture treated with IL-13[J]. Am J Rhinol Allergy, 2010, 24(1): 17-20. doi: 10.2500/ajra.2010.24.3381
[36] 屈纪富, 江德鹏. 分泌性白细胞蛋白酶抑制因子在创伤愈合中的潜在应用前景[J]. 创伤外科杂志, 2009, 11(5): 471-473. doi: 10.3969/j.issn.1009-4237.2009.05.031
[37] Zani ML, Tanga A, Saidi A, et al. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions[J]. Biochem Soc Trans, 2011, 39(5): 1441-1446. doi: 10.1042/BST0391441
[38] Dong D, Yulin Z, Yan X, et al. Enhanced expressions of lysozyme, SLPI and glycoprotein 340 in biofilm-associated chronic rhinosinusitis[J]. Eur Arch Otorhinolaryngol, 2014, 271(6): 1563-1571. doi: 10.1007/s00405-013-2758-8
[39] Singh PK, Tack BF, McCray PB Jr, et al. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid[J]. Am J Physiol Lung Cell Mol Physiol, 2000, 279(5): L799-805. doi: 10.1152/ajplung.2000.279.5.L799
[40] Abbinante-Nissen JM, Simpson LG, Leikauf GD. Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells[J]. Am J Physiol, 1995, 268(4 Pt 1): L601-606.
[41] van Wetering S, van der Linden AC, van Sterkenburg MA, et al. Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins[J]. Am J Physiol Lung Cell Mol Physiol, 2000, 278(1): L51-58. doi: 10.1152/ajplung.2000.278.1.L51
[42] Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2009, 124(1): 37-42. doi: 10.1016/j.jaci.2009.04.045
[43] Seshadri S, Rosati M, Lin DC, et al. Regional differences in the expression of innate host defense molecules in sinonasal mucosa[J]. J Allergy Clin Immunol, 2013, 132(5): 1227-1230. e5. doi: 10.1016/j.jaci.2013.05.042
[44] Acıo lu E, Yigit O, Alkan Z, et al. The effects of corticosteroid on tissue lactoferrin in patients with nasal polyposis[J]. Am J Rhinol Allergy, 2012, 26(1): e28-31. doi: 10.2500/ajra.2012.26.3735
[45] Woods CM, Lee VS, Hussey DJ, et al. Lysozyme expression is increased in the sinus mucosa of patients with chronic rhinosinusitis[J]. Rhinology, 2012, 50(2): 147-156. doi: 10.4193/Rhino11.229
[46] Kalfa VC, Spector SL, Ganz T, et al. Lysozyme levels in the nasal secretions of patients with perennial allergic rhinitis and recurrent sinusitis[J]. Ann Allergy Asthma Immunol, 2004, 93(3): 288-292. doi: 10.1016/S1081-1206(10)61503-7
[47] Laudien M, Dressel S, Harder J, et al. Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion[J]. Rhinology, 2011, 49(1): 107-111. doi: 10.4193/Rhino10.036
[48] Wang K, Chen L, Wang Y, et al. Sphenopalatine Ganglion Acupuncture Improves Nasal Ventilation and Modulates Autonomic Nervous Activity in Healthy Volunteers: A Randomized Controlled Study[J]. Sci Rep, 2016, 6: 29947. doi: 10.1038/srep29947
[49] McMahon DB, Carey RM, Kohanski MA, et al. Neuropeptide regulation of secretion and inflammation in human airway gland serous cells[J]. Eur Respir J, 2020, 55(4): 1901386. doi: 10.1183/13993003.01386-2019
计量
- 文章访问数: 1268
- PDF下载数: 276
- 施引文献: 0