GJB2基因致聋突变婴儿基因型与听力表型分析

王现蕾, 赵雪雷, 黄丽辉, 等. GJB2基因致聋突变婴儿基因型与听力表型分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(2): 113-118. doi: 10.13201/j.issn.1001-1781.2020.02.004
引用本文: 王现蕾, 赵雪雷, 黄丽辉, 等. GJB2基因致聋突变婴儿基因型与听力表型分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(2): 113-118. doi: 10.13201/j.issn.1001-1781.2020.02.004
WANG Xianlei, ZHAO Xuelei, HUANG Lihui, et al. Analysis of genotypes and hearing phenotypes of mutation infants with deafness[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(2): 113-118. doi: 10.13201/j.issn.1001-1781.2020.02.004
Citation: WANG Xianlei, ZHAO Xuelei, HUANG Lihui, et al. Analysis of genotypes and hearing phenotypes of mutation infants with deafness[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(2): 113-118. doi: 10.13201/j.issn.1001-1781.2020.02.004

GJB2基因致聋突变婴儿基因型与听力表型分析

  • 基金项目:
    国家自然科学基金面上项目(No:81870730)
详细信息

Analysis of genotypes and hearing phenotypes of mutation infants with deafness

More Information
  • 目的 探讨GJB2基因致聋突变婴儿的基因型与听力表型。方法 研究对象为就诊的121例GJB2基因致聋突变婴儿。受试者均接受新生儿听力筛查并有明确结果;接受声导抗、多频稳态反应等听力学检测;接受晶芯九项遗传性聋基因芯片或GJB2基因全编码区检测,确诊为GJB2基因致聋突变者。总体分析GJB2基因致聋突变婴儿基因型与听力表型;根据突变位点类型将受试者分为2个组:T/T组(截断/截断突变,89例),T/NT组(截断/非截断突变,32例),分析2组新生儿听力筛查结果、听力程度、听力曲线类型和双耳听力表型对称/非对称性。结果 截断突变中检出率最高的位点为c.235delC(64.88%,157/242),非截断突变中检出率最高的位点为c.109G>A(11.16%,27/242)。基因型T/T组以c.235delC/c.235delC纯合突变为主(38.84%,47/121),T/NT组以c.235delC/c.109G>A复合杂合突变为主(18.18%,22/121)。121例受试者中,新生儿听力筛查未通过占81.82%(99/121);T/T组听力筛查未通过占86.52%(77/89),T/NT组听力筛查未通过占68.75%(22/32),2组差异有统计学意义(P<0.05)。听力程度:听力正常14.05%(17/121),听力损失85.95%(104/121),其中极重度、重度、中度和轻度分别为31.40%(38/121),24.79%(30/121),19.01%(23/121)和10.74%(13/121)。T/T组89例均确诊为听力损失,其中以重度和极重度听力损失为主,占65.17%(58/89);T/NT组听力正常占53.13%(17/32),听力损失以轻度、中度听力损失为主,占37.5%(12/32),2组差异有统计学意义(P<0.05)。104例(208耳)听力损失患儿中,听力曲线类型以平坦型为主(49.03%,102/208);T/T组平坦型检出率最高(47.19%,84/178),其次为其他(20.22%,36/178);T/NT组平坦型检出率为60.00%(18/30),其次为上升型(20.00%,6/30),2组差异有统计学意义(P<0.05)。双耳听力表型对称50例(48.07%),非对称54例(51.93%);T/T组双耳非对称占53.93%(48/89),T/NT组双耳对称占60.00%(9/15),2组差异无统计学意义(P>0.05)。结论 该研究中T/T组以c.235delC/c.235delC纯合突变为主,T/NT组以c.235delC/c.109G>A复合杂合突变为主。听力表型具有多样性,不同基因型的听力表型存在差异,T/T组多为双耳非对称的极重度听力损失,T/NT组多为双耳对称的轻中度听力损失,遗传咨询时,应特别关注不同基因型的听力学特点。
  • 加载中
  • 表 1  ASSR听反应阈与小儿行为测听听敏度校正因子

    阈值/dB nHL 频率/kHz
    0.5 1.0 2.0 4.0
    20~25 15 10 5 15
    30~35 10 10 5 10
    40~45 10 5 5 10
    50~55 10 5 5 10
    60~65 5 5 0 5
    70~75 5 5 0 5
    80~85 5 0 0 5
    90~95 0 0 0 0
    100 0 0 0 0
    注:eHL=nHL-校正因子;例如:ASSR测试500 Hz听反应阈为60 dB,则预估听力为60-5=55(dB eHL)
    下载: 导出CSV

    表 2  GJB2基因突变位点情况

    突变类型 突变位点 检出方式 氨基酸改变 突变数量 突变频率/%
    T c.176del16 筛查 11 4.55
    c.235delC 筛查 157 64.88
    c.299delAT 筛查 42 17.36
    NT c.109G>A 测序 Val37Ile 27 11.16
    c.427C>T 测序 Arg143Trp 2 0.83
    c.583A>G 测序 Met195Val 2 0.83
    c.9G>A 测序 Trp3Ter 1 0.41
    下载: 导出CSV

    表 3  2组基因型分布

    组别 基因型 例数(%)
    T/T c.176dell6/c.176dell6 1(0.83)
    c.176del16/c.235delC 6(4.96)
    c.176del16/c.299delAT 1(0.83)
    c.235delC/c.235delC 47(38.84)
    c.235delC/c.299delAT 30(24.79)
    c.299delAT/c.299delAT 4(3.31)
    T/NT c.109G>A/c.176del16 2(1.65)
    c.109G>A/c.235delC 22(18.18)
    c.109G>A/c.299delAT 3(2.48)
    c.427C>T/c.235delC 2(1.65)
    c.538A>G/c.235delC 1(0.83)
    c.9G>A/c.235delC 2(1.65)
    下载: 导出CSV

    表 4  2组新生儿听力筛查比较 例(%)

    组别 双耳通过 单耳未通过 双耳未通过 χ2 P
    T/T组 12(13.48) 5(5.62) 72(80.90) 7.41 0.02
    T/NT组 10(31.25) 4(12.50) 18(56.25)
    下载: 导出CSV

    表 5  2组听力程度比较 例(%)

    组别 例数 正常 轻度 中度 重度 极重度 χ2 P
    T/T组 89 0(0) 7(7.87) 24(26.97) 22(24.72) 36(40.46) 62.35 0.00
    T/NT组 32 17(53.13) 6(18.75) 6(18.75) 1(3.12) 2(6.25)
    下载: 导出CSV

    表 6  2组听力曲线类型比较 耳(%)

    组别 例数 下降型 平坦型 谷型 上升型 残余型 其他 χ2 P
    T/T组 89 24(13.48) 84(47.19) 6(3.37) 12(6.74) 16(8.99) 36(20.22) 10.65 0.04
    T/NT组 32 1(3.33) 18(60.00) 1(3.33) 6(20.00) 0(0) 4(13.33)
    下载: 导出CSV

    表 7  2组听力表型对称/非对称性比较 例(%)

    组别 例数 对称 非对称 χ2 P
    A型 B型 C型
    T/T组 89 41(46.07) 17(19.10) 13(14.61) 18(20.22) 1.51 0.69
    T/NT组 32 9(60.00) 1(6.67) 2(13.33) 3(20.00)
    下载: 导出CSV
  • [1]

    Mahboubi H, Dwabe S, Fradkin M, et al. Genetics of hearing loss: where are we standing now?[J]. Eur Arch Otorhinolaryngol, 2012, 269: 1733-1745. doi: 10.1007/s00405-011-1910-6

    [2]

    Taniguchi M, Matsuo H, Shimizu S, et al. Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population[J]. J Hum Genet, 2015, 60: 613-617. doi: 10.1038/jhg.2015.82

    [3]

    刘佳星, 黄丽辉, 傅新星, 等. 大前庭水管综合征患儿听力学检测特点分析[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 21(30): 1702-1705. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201621009.htm

    [4]

    Mazzoli M, Camp GV, Newton V, et al. Recommendations for the description of genetic and audiological data for families with nonsyndromic hereditary hearing impairment[J]. Audiol Med, 2009, 1: 148-150.

    [5]

    Li L, Lu J, Tao Z, et al. The p. V37I exclusive genotype of GJB2: a genetic risk-indicator of postnatal permanent childhood hearing impairment[J]. PLoS One, 2012, 7: e36221.

    [6]

    Dai P, Yu F, Han B, et al. GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment[J]. J Transl Med, 2009, 7: 1-12. doi: 10.1186/1479-5876-7-1

    [7]

    Cohn ES, Kelley PM, Fowler TW, et al. Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene(GJB2/DFNB1)[J]. Pediatrics, 1999, 103: 546-550. doi: 10.1542/peds.103.3.546

    [8]

    Norris VW, Arnos KS, Hanks WD, et al. Does universal newborn hearing screening identify all children with GJB2(Connexin 26) deafness? Penetrance of GJB2 deafness[J]. Ear Hear, 2006, 27: 732-741. doi: 10.1097/01.aud.0000240492.78561.d3

    [9]

    Minami S B, Mutai H, Nakano A, et al. GJB2-associated hearing loss undetected by hearing screening of newborns[J]. Gene, 2013, 532: 41-45. doi: 10.1016/j.gene.2013.08.094

    [10]

    Wu CC, Tsai CH, Hung CC, et al. Newborn genetic screening for hearing impairment: a population-based longitudinal study[J]. Genet Med, 2017, 19: 6-12. doi: 10.1038/gim.2016.66

    [11]

    Snoeckx RL, Huygen PL, Feldmann D, et al. GJB2 mutations and degree of hearing loss: a multicenter study. [J]. Am J Human Gene, 2005, 77: 945-957. doi: 10.1086/497996

    [12]

    文铖, 黄丽辉, 王雪瑶, 等. GJB2基因致聋突变儿童听力进展的随访研究[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(23): 1798-1803. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201823008.htm

    [13]

    Liu X Z, Pandya A, Angeli S, et al. Audiological Features of GJB2(Connexin 26) Deafness[J]. Ear Hear, 2005, 26: 361-369. doi: 10.1097/00003446-200506000-00011

    [14]

    Lee K H, Larson DA, Shott G, et al. Audiologic and temporal bone imaging findings in patients with sensorineural hearing loss and GJB2 mutations[J]. Laryngoscope, 2010, 119: 554-558.

    [15]

    Chinetti V, Lossa S, Auletta G, et al. Screening for GJB2 and GJB6 gene mutations in patients from Campania region with sensorineural hearing loss[J]. Int Audiol, 2010, 49: 325-331.

    [16]

    Zhang J, Wang Z, Dai W, et al. GJB2 Allele Variants and the associated audiologic features identified in chinese patients with less severe idiopathic hearing loss[J]. Genet Test Mol Biomarkers, 2011, 15: 313-318. doi: 10.1089/gtmb.2010.0182

    [17]

    Lipan M, Ouyang X, Yan D, et al. Clinical comparison of hearing-impaired patients with DFNB1 against heterozygote carriers of connexin 26 mutations[J]. Laryngoscope, 2011, 121: 811-814. doi: 10.1002/lary.21422

  • 加载中
计量
  • 文章访问数:  2304
  • PDF下载数:  4918
  • 施引文献:  0
出版历程
收稿日期:  2019-05-11
刊出日期:  2020-02-05

目录