-
摘要: 慢性鼻窦炎伴鼻息肉是常见的慢性炎性疾病,伴有明显的组织重塑,其重塑机制尚不明确。研究发现T2型炎症网络在组织重塑及鼻息肉形成过程中发挥至关重要的作用,并已针对多个生物靶点开展临床试验,还有若干潜在的治疗靶点受到越来越多的关注。本文将归纳总结T2型炎症反应参与鼻息肉组织重塑的研究进展,以期为进一步探究鼻息肉组织重塑的发生机制提供思路。Abstract: Chronic rhinosinusitis with nasal polyps is a common chronic inflammatory disease with significant tissue remodeling, but the mechanism of remodeling remains unclear. Studies have shown that Type(T) 2 inflammatory network plays a crucial role in tissue remodeling and nasal polyp formation. Clinical trials have been carried out for several biological targets, and a number of potential therapeutic targets have received increasing attention. This paper will summarize the research progress of T2 inflammatory response involved in nasal polyp tissue remodeling to provide ideas for further exploring the mechanism of nasal polyp tissue remodeling.
-
[1] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464.
[2] Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma[J]. Allergy, 2019, 74(12): 2312-2319. doi: 10.1111/all.13875
[3] Zhao Y, Chen JR, Hao Y, et al. Predicting the recurrence of chronic rhinosinusitis with nasal polyps using nasal microbiota[J]. Allergy, 2022, 77(2): 540-549. doi: 10.1111/all.15168
[4] Laidlaw TM, Mullol J, Woessner KM, et al. Chronic rhinosinusitis with nasal polyps and asthma[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1133-1141. doi: 10.1016/j.jaip.2020.09.063
[5] Dong X, Ding M, Zhang JJ, et al. Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma[J]. Chin Med J, 2022, 135(5): 519-531. doi: 10.1097/CM9.0000000000001983
[6] Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. doi: 10.1007/s00281-020-00785-1
[7] Hellings PW, Verhoeven E, Fokkens WJ. State-of-the-art overview on biological treatment for CRSwNP[J]. Rhinology, 2021, 59(2): 151-163.
[8] Lee HY, Pyo JS, Kim SJ. Distinct patterns of tissue remodeling and their prognostic role in chronic rhinosinusitis[J]. ORL J Otorhinolaryngol Relat Spec, 2021, 83(6): 457-463. doi: 10.1159/000515005
[9] Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis[J]. Ann Allergy Asthma Immunol, 2020, 124(4): 333-341. doi: 10.1016/j.anai.2020.01.018
[10] 王晓燕, 孟一帆, 王成硕, 等. 慢性鼻窦炎钩突内外侧面黏膜组织病理学差异[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(2): 95-100. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2022.02.004
[11] Kato A, Peters AT, Stevens WW, et al. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches[J]. Allergy, 2022, 77(3): 812-826. doi: 10.1111/all.15074
[12] 司马宇彤, 赵妍, 矫健, 等. 以慢性鼻窦炎内在型为导向的临床治疗选择[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 902-908. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.11.009
[13] Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2022, 149(5): 1491-1503. doi: 10.1016/j.jaci.2022.02.016
[14] 张罗. 生物制剂治疗慢性鼻窦炎鼻息肉的现状和展望[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 853-855. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.11.001
[15] Zhang N, van Crombruggen K, Gevaert E, et al. Barrier function of the nasal mucosa in health and type-2 biased airway diseases[J]. Allergy, 2016, 71(3): 295-307. doi: 10.1111/all.12809
[16] Zhao RW, Guo ZQ, Dong WY, et al. Effects of PM2. 5on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2018, 8(11): 1349-1355. doi: 10.1002/alr.22182
[17] Okuda K, Chen G, Subramani DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways[J]. Am J Respir Crit Care Med, 2019, 199(6): 715-727. doi: 10.1164/rccm.201804-0734OC
[18] Liu L, Yan C, Tao S. Association of MUC2, MUC5AC and MUC5B genes with the recurrence of nasal polyps[J]. Exp Ther Med, 2020, 20(2): 1808-1814. doi: 10.3892/etm.2020.8837
[19] Bonser LR, Erle DJ. Airway mucus and asthma: the role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): 112. doi: 10.3390/jcm6120112
[20] Liu J, Li YY, Andiappan AK, et al. Role of IL-13Rα2 in modulating IL-13-induced MUC5AC and ciliary changes in healthy and CRSwNP mucosa[J]. Allergy, 2018, 73(8): 1673-1685. doi: 10.1111/all.13424
[21] Xu X, Li JY, Zhang Y, et al. Arachidonic acid 15-lipoxygenase: effects of its expression, metabolites, and genetic and epigenetic variations on airway inflammation[J]. Allergy Asthma Immunol Res, 2021, 13(5): 684-696. doi: 10.4168/aair.2021.13.5.684
[22] Zi XX, Guan WJ, Peng Y, et al. An integrated analysis of radial spoke head and outer dynein arm protein defects and ciliogenesis abnormality in nasal polyps[J]. Front Genet, 2019, 10: 1083. doi: 10.3389/fgene.2019.01083
[23] Seibold MA. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium[J]. Ann Am Thorac Soc, 2018, 15(Suppl 2): S98-S102.
[24] Zhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps[J]. Allergy, 2019, 74(1): 131-140. doi: 10.1111/all.13489
[25] Sugimoto K, Chiba H. The claudin-transcription factor signaling pathway[J]. Tissue Barriers, 2021, 9(3): 1908109. doi: 10.1080/21688370.2021.1908109
[26] Kolchakova D, Moten D, Batsalova T, et al. Tight junction protein claudin-12 is involved in cell migration during metastasis[J]. Biomolecules, 2021, 11(5): 636. doi: 10.3390/biom11050636
[27] Jiao J, Wang C, Zhang L. Epithelial physical barrier defects in chronic rhinosinusitis[J]. Expert Rev Clin Immunol, 2019, 15(6): 679-688. doi: 10.1080/1744666X.2019.1601556
[28] Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4[J]. J Allergy Clin Immunol, 2012, 130(5): 1087-1096. e10. doi: 10.1016/j.jaci.2012.05.052
[29] Jiang J, Liu JQ, Li J, et al. Trek1 contributes to maintaining nasal epithelial barrier integrity[J]. Sci Rep, 2015, 5: 9191. doi: 10.1038/srep09191
[30] Schmidt H, Braubach P, Schilpp C, et al. IL-13 impairs tight junctions in airway epithelia[J]. Int J Mol Sci, 2019, 20(13): 3222. doi: 10.3390/ijms20133222
[31] Klimek L, Koennecke M, Mullol J, et al. A possible role of stem cells in nasal polyposis[J]. Allergy, 2017, 72(12): 1868-1873. doi: 10.1111/all.13221
[32] Ordovas-Montanes J, Dwyer DF, Nyquist SK, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells[J]. Nature, 2018, 560(7720): 649-654. doi: 10.1038/s41586-018-0449-8
[33] Zhao L, Li YY, Li CW, et al. Increase of poorly proliferated p63+/Ki67+basal cells forming multiple layers in the aberrant remodeled epithelium in nasal polyps[J]. Allergy, 2017, 72(6): 975-984. doi: 10.1111/all.13074
[34] Li LY, Zhou YT, Sun L, et al. Downregulation of MCM2 contributes to the reduced growth potential of epithelial progenitor cells in chronic nasal inflammation[J]. J Allergy Clin Immunol, 2021, 147(5): 1966-1973. e3. doi: 10.1016/j.jaci.2020.11.026
[35] Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states[J]. Cell Metab, 2018, 27(6): 1176-1199. doi: 10.1016/j.cmet.2018.05.011
[36] Wang BF, Cao PP, Wang ZC, et al. Interferon-γ-induced insufficient autophagy contributes to p62-dependent apoptosis of epithelial cells in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2017, 72(9): 1384-1397. doi: 10.1111/all.13153
[37] 赵妍, 王月, 矫健, 等. 2型细胞因子白细胞介素4和白细胞介素13对慢性鼻窦炎伴鼻息肉中鼻黏膜上皮细胞自噬的影响[J]. 中国耳鼻咽喉头颈外科, 2022, 29(8): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT202208008.htm
[38] Amirapu S, Biswas K, Radcliff FJ, et al. Sinonasal tissue remodelling during chronic rhinosinusitis[J]. Int J Otolaryngol, 2021, 2021: 7428955.
[39] Kuhar HN, Tajudeen BA, Mahdavinia M, et al. Inflammatory infiltrate and mucosal remodeling in chronic rhinosinusitis with and without polyps: structured histopathologic analysis[J]. Int Forum Allergy Rhinol, 2017, 7(7): 679-689. doi: 10.1002/alr.21943
[40] Lee K, Tai JH, Lee SH, et al. Advances in the knowledge of the underlying airway remodeling mechanisms in chronic rhinosinusitis based on the endotypes: a review[J]. Int J Mol Sci, 2021, 22(2): 910. doi: 10.3390/ijms22020910
[41] Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics[J]. J Clin Invest, 2003, 112(7): 1029-1036. doi: 10.1172/JCI17974
[42] Khurana N, Pulsipher A, Jedrzkiewicz J, et al. Inflammation-driven vascular dysregulation in chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2021, 11(6): 976-983. doi: 10.1002/alr.22723
[43] Skaria T, Burgener J, Bachli E, et al. IL-4 causes hyperpermeability of vascular endothelial cells through Wnt5A signaling[J]. PLoS One, 2016, 11(5): e0156002. doi: 10.1371/journal.pone.0156002
[44] Chalubinski M, Wojdan K, Luczak E, et al. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms[J]. Vascul Pharmacol, 2015, 73: 57-63. doi: 10.1016/j.vph.2015.07.012
[45] Suzuki M, Ramezanpour M, Cooksley C, et al. Sirtuin-1 controls poly(I: C)- dependent matrix metalloproteinase 9 activation in primary human nasal epithelial cells[J]. Am J Respir Cell Mol Biol, 2018, 59(4): 500-510. doi: 10.1165/rcmb.2017-0415OC
[46] Lygeros S, Danielides G, Kyriakopoulos GC, et al. Evaluation of MMP-12 expression in chronic rhinosinusitis with nasal polyposis[J]. Rhinology, 2022, 60(1): 39-46.
[47] Du K, Wang M, Zhang N, et al. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs[J]. Clin Transl Allergy, 2021, 11(7): e12059. doi: 10.1002/clt2.12059
[48] Shi LL, Ma J, Deng YK, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 497-509. doi: 10.1111/all.14287
[49] Dinarte VRP, Santos ARDD, Araújo LF, et al. Polymorphisms in chronic rhinosinusitis with nasal polyps-a systematic review[J]. Braz J Otorhinolaryngol, 2017, 83(6): 705-711. doi: 10.1016/j.bjorl.2017.03.002
[50] Yang LY, Li X, Li WT, et al. Vγ1+γδT cells are correlated with increasing expression of eosinophil cationic protein and metalloproteinase-7 in chronic rhinosinusitis with nasal polyps inducing the formation of edema[J]. Allergy Asthma Immunol Res, 2017, 9(2): 142-151. doi: 10.4168/aair.2017.9.2.142
[51] Li X, Huang JC, Chen XH, et al. IL-19 induced by IL-13/IL-17A in the nasal epithelium of patients with chronic rhinosinusitis upregulates MMP-9 expression via ERK/NF-κB signaling pathway[J]. Clin Transl Allergy, 2021, 11(1): e12003. doi: 10.1002/clt2.12003
[52] Wei Y, Ma RQ, Zhang J, et al. Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma[J]. J Thorac Dis, 2018, 10(12): 6585-6597. doi: 10.21037/jtd.2018.11.12
[53] Guerra G, Testa D, Salzano FA, et al. Expression of matrix metalloproteinases and their tissue inhibitors in chronic rhinosinusitis with nasal polyps: etiopathogenesis and recurrence[J]. Ear Nose Throat J, 2021, 100(5_suppl): 597S-605S. doi: 10.1177/0145561319896635
[54] Katainen E, Kostamo K, Virkkula P, et al. Local and systemic proteolytic responses in chronic rhinosinusitis with nasal polyposis and asthma[J]. Int Forum Allergy Rhinol, 2015, 5(4): 294-302. doi: 10.1002/alr.21486
[55] Ismail AA, Shaker BT, Bajou K. The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis[J]. Int J Mol Sci, 2021, 23(1): 337. doi: 10.3390/ijms23010337
[56] Takabayashi T, Kato A, Peters AT, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression[J]. Am J Respir Crit Care Med, 2013, 187(1): 49-57. doi: 10.1164/rccm.201207-1292OC
[57] Takabayashi T, Kato A, Peters AT, et al. Increased expression of factor XⅢ-a in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2013, 132(3): 584-592. e4. doi: 10.1016/j.jaci.2013.02.003
[58] 巴罗, 杜进涛, 蔡舜玉, 等. 不同免疫表型鼻息肉中黏膜炎症模式与组织重塑特征[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(16): 1302-1307. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.1001-1781.2016.16.010
[59] Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820. e3. doi: 10.1016/j.jaip.2019.05.009
[60] Wang XD, Zhang N, Bo MY, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania[J]. J Allergy Clin Immunol, 2016, 138(5): 1344-1353. doi: 10.1016/j.jaci.2016.05.041
[61] Xia WT, Bai J, Wu XM, et al. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway[J]. PLoS One, 2014, 9(6): e98915. doi: 10.1371/journal.pone.0098915
[62] Lee MY, Kim DW, Khalmuratova R, et al. The IFN-γ-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition[J]. Mucosal Immunol, 2019, 12(3): 601-611. doi: 10.1038/s41385-019-0149-1
[63] Ryu G, Mo JH, Shin HW. Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2021, 21(1): 30-37. doi: 10.1097/ACI.0000000000000701
[64] Wang M, Zhang N, Zheng M, et al. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2019, 144(5): 1254-1264. doi: 10.1016/j.jaci.2019.06.023
[65] Sun B, Zhu LN, Tao YL, et al. Characterization and allergic role of IL-33-induced neutrophil polarization[J]. Cell Mol Immunol, 2018, 15(8): 782-793. doi: 10.1038/cmi.2017.163
[66] 张书剑, 张宇玲, 赵丽敏, 等. 难治性鼻息肉Th17细胞亚型鉴定、分化以及调节机制的进展研究[J]. 国际耳鼻咽喉头颈外科杂志, 2022, 46(2): 80-83. doi: 10.3760/cma.j.issn.1673-4106.2022.02.004
计量
- 文章访问数: 453
- 施引文献: 0