T2型炎症反应与鼻息肉组织重塑的研究进展

黄雨晴, 孟琛, 闫冰, 等. T2型炎症反应与鼻息肉组织重塑的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(9): 872-878. doi: 10.13201/j.issn.2096-7993.2024.09.019
引用本文: 黄雨晴, 孟琛, 闫冰, 等. T2型炎症反应与鼻息肉组织重塑的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(9): 872-878. doi: 10.13201/j.issn.2096-7993.2024.09.019
HUANG Yuqing, MENG Chen, YAN Bing, et al. Research progress of type 2 inflammation-related tissue remodeling in nasal polyps[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(9): 872-878. doi: 10.13201/j.issn.2096-7993.2024.09.019
Citation: HUANG Yuqing, MENG Chen, YAN Bing, et al. Research progress of type 2 inflammation-related tissue remodeling in nasal polyps[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(9): 872-878. doi: 10.13201/j.issn.2096-7993.2024.09.019

T2型炎症反应与鼻息肉组织重塑的研究进展

  • 基金项目:
    国家重点研发计划(No:2022YFC2504100);国家自然科学基金(No:82025010、No:81630023、No:82171108、No:81900917、No:81870698、No:82301329);教育部长江学者创新团队(No:IRT13082);中国医学科学院医学与健康科技创新工程项目资助(No:2019-I2M-5-022);北京市科学技术委员会项目(No:Z221100007422009、No:Z211100002921057);首都卫生发展科研专项(No:CFH2022-1-1091);北京市医院管理局使命计划(No:SML20150203);北京市属医学科研院所公益发展改革试点项目(No:JYY2021-2);北京市属医院科研培育计划(No:PX2024010)
详细信息

Research progress of type 2 inflammation-related tissue remodeling in nasal polyps

More Information
  • 慢性鼻窦炎伴鼻息肉是常见的慢性炎性疾病,伴有明显的组织重塑,其重塑机制尚不明确。研究发现T2型炎症网络在组织重塑及鼻息肉形成过程中发挥至关重要的作用,并已针对多个生物靶点开展临床试验,还有若干潜在的治疗靶点受到越来越多的关注。本文将归纳总结T2型炎症反应参与鼻息肉组织重塑的研究进展,以期为进一步探究鼻息肉组织重塑的发生机制提供思路。
  • 加载中
  • [1]

    Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464.

    [2]

    Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma[J]. Allergy, 2019, 74(12): 2312-2319. doi: 10.1111/all.13875

    [3]

    Zhao Y, Chen JR, Hao Y, et al. Predicting the recurrence of chronic rhinosinusitis with nasal polyps using nasal microbiota[J]. Allergy, 2022, 77(2): 540-549. doi: 10.1111/all.15168

    [4]

    Laidlaw TM, Mullol J, Woessner KM, et al. Chronic rhinosinusitis with nasal polyps and asthma[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1133-1141. doi: 10.1016/j.jaip.2020.09.063

    [5]

    Dong X, Ding M, Zhang JJ, et al. Involvement and therapeutic implications of airway epithelial barrier dysfunction in type 2 inflammation of asthma[J]. Chin Med J, 2022, 135(5): 519-531. doi: 10.1097/CM9.0000000000001983

    [6]

    Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15. doi: 10.1007/s00281-020-00785-1

    [7]

    Hellings PW, Verhoeven E, Fokkens WJ. State-of-the-art overview on biological treatment for CRSwNP[J]. Rhinology, 2021, 59(2): 151-163.

    [8]

    Lee HY, Pyo JS, Kim SJ. Distinct patterns of tissue remodeling and their prognostic role in chronic rhinosinusitis[J]. ORL J Otorhinolaryngol Relat Spec, 2021, 83(6): 457-463. doi: 10.1159/000515005

    [9]

    Bankova LG, Barrett NA. Epithelial cell function and remodeling in nasal polyposis[J]. Ann Allergy Asthma Immunol, 2020, 124(4): 333-341. doi: 10.1016/j.anai.2020.01.018

    [10]

    王晓燕, 孟一帆, 王成硕, 等. 慢性鼻窦炎钩突内外侧面黏膜组织病理学差异[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(2): 95-100. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2022.02.004

    [11]

    Kato A, Peters AT, Stevens WW, et al. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches[J]. Allergy, 2022, 77(3): 812-826. doi: 10.1111/all.15074

    [12]

    司马宇彤, 赵妍, 矫健, 等. 以慢性鼻窦炎内在型为导向的临床治疗选择[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 902-908. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.11.009

    [13]

    Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2022, 149(5): 1491-1503. doi: 10.1016/j.jaci.2022.02.016

    [14]

    张罗. 生物制剂治疗慢性鼻窦炎鼻息肉的现状和展望[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 853-855. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2023.11.001

    [15]

    Zhang N, van Crombruggen K, Gevaert E, et al. Barrier function of the nasal mucosa in health and type-2 biased airway diseases[J]. Allergy, 2016, 71(3): 295-307. doi: 10.1111/all.12809

    [16]

    Zhao RW, Guo ZQ, Dong WY, et al. Effects of PM2. 5on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2018, 8(11): 1349-1355. doi: 10.1002/alr.22182

    [17]

    Okuda K, Chen G, Subramani DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways[J]. Am J Respir Crit Care Med, 2019, 199(6): 715-727. doi: 10.1164/rccm.201804-0734OC

    [18]

    Liu L, Yan C, Tao S. Association of MUC2, MUC5AC and MUC5B genes with the recurrence of nasal polyps[J]. Exp Ther Med, 2020, 20(2): 1808-1814. doi: 10.3892/etm.2020.8837

    [19]

    Bonser LR, Erle DJ. Airway mucus and asthma: the role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): 112. doi: 10.3390/jcm6120112

    [20]

    Liu J, Li YY, Andiappan AK, et al. Role of IL-13Rα2 in modulating IL-13-induced MUC5AC and ciliary changes in healthy and CRSwNP mucosa[J]. Allergy, 2018, 73(8): 1673-1685. doi: 10.1111/all.13424

    [21]

    Xu X, Li JY, Zhang Y, et al. Arachidonic acid 15-lipoxygenase: effects of its expression, metabolites, and genetic and epigenetic variations on airway inflammation[J]. Allergy Asthma Immunol Res, 2021, 13(5): 684-696. doi: 10.4168/aair.2021.13.5.684

    [22]

    Zi XX, Guan WJ, Peng Y, et al. An integrated analysis of radial spoke head and outer dynein arm protein defects and ciliogenesis abnormality in nasal polyps[J]. Front Genet, 2019, 10: 1083. doi: 10.3389/fgene.2019.01083

    [23]

    Seibold MA. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium[J]. Ann Am Thorac Soc, 2018, 15(Suppl 2): S98-S102.

    [24]

    Zhang Y, Derycke L, Holtappels G, et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps[J]. Allergy, 2019, 74(1): 131-140. doi: 10.1111/all.13489

    [25]

    Sugimoto K, Chiba H. The claudin-transcription factor signaling pathway[J]. Tissue Barriers, 2021, 9(3): 1908109. doi: 10.1080/21688370.2021.1908109

    [26]

    Kolchakova D, Moten D, Batsalova T, et al. Tight junction protein claudin-12 is involved in cell migration during metastasis[J]. Biomolecules, 2021, 11(5): 636. doi: 10.3390/biom11050636

    [27]

    Jiao J, Wang C, Zhang L. Epithelial physical barrier defects in chronic rhinosinusitis[J]. Expert Rev Clin Immunol, 2019, 15(6): 679-688. doi: 10.1080/1744666X.2019.1601556

    [28]

    Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4[J]. J Allergy Clin Immunol, 2012, 130(5): 1087-1096. e10. doi: 10.1016/j.jaci.2012.05.052

    [29]

    Jiang J, Liu JQ, Li J, et al. Trek1 contributes to maintaining nasal epithelial barrier integrity[J]. Sci Rep, 2015, 5: 9191. doi: 10.1038/srep09191

    [30]

    Schmidt H, Braubach P, Schilpp C, et al. IL-13 impairs tight junctions in airway epithelia[J]. Int J Mol Sci, 2019, 20(13): 3222. doi: 10.3390/ijms20133222

    [31]

    Klimek L, Koennecke M, Mullol J, et al. A possible role of stem cells in nasal polyposis[J]. Allergy, 2017, 72(12): 1868-1873. doi: 10.1111/all.13221

    [32]

    Ordovas-Montanes J, Dwyer DF, Nyquist SK, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells[J]. Nature, 2018, 560(7720): 649-654. doi: 10.1038/s41586-018-0449-8

    [33]

    Zhao L, Li YY, Li CW, et al. Increase of poorly proliferated p63+/Ki67+basal cells forming multiple layers in the aberrant remodeled epithelium in nasal polyps[J]. Allergy, 2017, 72(6): 975-984. doi: 10.1111/all.13074

    [34]

    Li LY, Zhou YT, Sun L, et al. Downregulation of MCM2 contributes to the reduced growth potential of epithelial progenitor cells in chronic nasal inflammation[J]. J Allergy Clin Immunol, 2021, 147(5): 1966-1973. e3. doi: 10.1016/j.jaci.2020.11.026

    [35]

    Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states[J]. Cell Metab, 2018, 27(6): 1176-1199. doi: 10.1016/j.cmet.2018.05.011

    [36]

    Wang BF, Cao PP, Wang ZC, et al. Interferon-γ-induced insufficient autophagy contributes to p62-dependent apoptosis of epithelial cells in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2017, 72(9): 1384-1397. doi: 10.1111/all.13153

    [37]

    赵妍, 王月, 矫健, 等. 2型细胞因子白细胞介素4和白细胞介素13对慢性鼻窦炎伴鼻息肉中鼻黏膜上皮细胞自噬的影响[J]. 中国耳鼻咽喉头颈外科, 2022, 29(8): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT202208008.htm

    [38]

    Amirapu S, Biswas K, Radcliff FJ, et al. Sinonasal tissue remodelling during chronic rhinosinusitis[J]. Int J Otolaryngol, 2021, 2021: 7428955.

    [39]

    Kuhar HN, Tajudeen BA, Mahdavinia M, et al. Inflammatory infiltrate and mucosal remodeling in chronic rhinosinusitis with and without polyps: structured histopathologic analysis[J]. Int Forum Allergy Rhinol, 2017, 7(7): 679-689. doi: 10.1002/alr.21943

    [40]

    Lee K, Tai JH, Lee SH, et al. Advances in the knowledge of the underlying airway remodeling mechanisms in chronic rhinosinusitis based on the endotypes: a review[J]. Int J Mol Sci, 2021, 22(2): 910. doi: 10.3390/ijms22020910

    [41]

    Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics[J]. J Clin Invest, 2003, 112(7): 1029-1036. doi: 10.1172/JCI17974

    [42]

    Khurana N, Pulsipher A, Jedrzkiewicz J, et al. Inflammation-driven vascular dysregulation in chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2021, 11(6): 976-983. doi: 10.1002/alr.22723

    [43]

    Skaria T, Burgener J, Bachli E, et al. IL-4 causes hyperpermeability of vascular endothelial cells through Wnt5A signaling[J]. PLoS One, 2016, 11(5): e0156002. doi: 10.1371/journal.pone.0156002

    [44]

    Chalubinski M, Wojdan K, Luczak E, et al. IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms[J]. Vascul Pharmacol, 2015, 73: 57-63. doi: 10.1016/j.vph.2015.07.012

    [45]

    Suzuki M, Ramezanpour M, Cooksley C, et al. Sirtuin-1 controls poly(I: C)- dependent matrix metalloproteinase 9 activation in primary human nasal epithelial cells[J]. Am J Respir Cell Mol Biol, 2018, 59(4): 500-510. doi: 10.1165/rcmb.2017-0415OC

    [46]

    Lygeros S, Danielides G, Kyriakopoulos GC, et al. Evaluation of MMP-12 expression in chronic rhinosinusitis with nasal polyposis[J]. Rhinology, 2022, 60(1): 39-46.

    [47]

    Du K, Wang M, Zhang N, et al. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs[J]. Clin Transl Allergy, 2021, 11(7): e12059. doi: 10.1002/clt2.12059

    [48]

    Shi LL, Ma J, Deng YK, et al. Cold-inducible RNA-binding protein contributes to tissue remodeling in chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 497-509. doi: 10.1111/all.14287

    [49]

    Dinarte VRP, Santos ARDD, Araújo LF, et al. Polymorphisms in chronic rhinosinusitis with nasal polyps-a systematic review[J]. Braz J Otorhinolaryngol, 2017, 83(6): 705-711. doi: 10.1016/j.bjorl.2017.03.002

    [50]

    Yang LY, Li X, Li WT, et al. Vγ1+γδT cells are correlated with increasing expression of eosinophil cationic protein and metalloproteinase-7 in chronic rhinosinusitis with nasal polyps inducing the formation of edema[J]. Allergy Asthma Immunol Res, 2017, 9(2): 142-151. doi: 10.4168/aair.2017.9.2.142

    [51]

    Li X, Huang JC, Chen XH, et al. IL-19 induced by IL-13/IL-17A in the nasal epithelium of patients with chronic rhinosinusitis upregulates MMP-9 expression via ERK/NF-κB signaling pathway[J]. Clin Transl Allergy, 2021, 11(1): e12003. doi: 10.1002/clt2.12003

    [52]

    Wei Y, Ma RQ, Zhang J, et al. Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma[J]. J Thorac Dis, 2018, 10(12): 6585-6597. doi: 10.21037/jtd.2018.11.12

    [53]

    Guerra G, Testa D, Salzano FA, et al. Expression of matrix metalloproteinases and their tissue inhibitors in chronic rhinosinusitis with nasal polyps: etiopathogenesis and recurrence[J]. Ear Nose Throat J, 2021, 100(5_suppl): 597S-605S. doi: 10.1177/0145561319896635

    [54]

    Katainen E, Kostamo K, Virkkula P, et al. Local and systemic proteolytic responses in chronic rhinosinusitis with nasal polyposis and asthma[J]. Int Forum Allergy Rhinol, 2015, 5(4): 294-302. doi: 10.1002/alr.21486

    [55]

    Ismail AA, Shaker BT, Bajou K. The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis[J]. Int J Mol Sci, 2021, 23(1): 337. doi: 10.3390/ijms23010337

    [56]

    Takabayashi T, Kato A, Peters AT, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression[J]. Am J Respir Crit Care Med, 2013, 187(1): 49-57. doi: 10.1164/rccm.201207-1292OC

    [57]

    Takabayashi T, Kato A, Peters AT, et al. Increased expression of factor XⅢ-a in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2013, 132(3): 584-592. e4. doi: 10.1016/j.jaci.2013.02.003

    [58]

    巴罗, 杜进涛, 蔡舜玉, 等. 不同免疫表型鼻息肉中黏膜炎症模式与组织重塑特征[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(16): 1302-1307. https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.1001-1781.2016.16.010

    [59]

    Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820. e3. doi: 10.1016/j.jaip.2019.05.009

    [60]

    Wang XD, Zhang N, Bo MY, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania[J]. J Allergy Clin Immunol, 2016, 138(5): 1344-1353. doi: 10.1016/j.jaci.2016.05.041

    [61]

    Xia WT, Bai J, Wu XM, et al. Interleukin-17A promotes MUC5AC expression and goblet cell hyperplasia in nasal polyps via the Act1-mediated pathway[J]. PLoS One, 2014, 9(6): e98915. doi: 10.1371/journal.pone.0098915

    [62]

    Lee MY, Kim DW, Khalmuratova R, et al. The IFN-γ-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition[J]. Mucosal Immunol, 2019, 12(3): 601-611. doi: 10.1038/s41385-019-0149-1

    [63]

    Ryu G, Mo JH, Shin HW. Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2021, 21(1): 30-37. doi: 10.1097/ACI.0000000000000701

    [64]

    Wang M, Zhang N, Zheng M, et al. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2019, 144(5): 1254-1264. doi: 10.1016/j.jaci.2019.06.023

    [65]

    Sun B, Zhu LN, Tao YL, et al. Characterization and allergic role of IL-33-induced neutrophil polarization[J]. Cell Mol Immunol, 2018, 15(8): 782-793. doi: 10.1038/cmi.2017.163

    [66]

    张书剑, 张宇玲, 赵丽敏, 等. 难治性鼻息肉Th17细胞亚型鉴定、分化以及调节机制的进展研究[J]. 国际耳鼻咽喉头颈外科杂志, 2022, 46(2): 80-83. doi: 10.3760/cma.j.issn.1673-4106.2022.02.004

  • 加载中
计量
  • 文章访问数:  453
  • 施引文献:  0
出版历程
收稿日期:  2023-05-12
修回日期:  2023-12-12
刊出日期:  2024-09-03

返回顶部

目录