唾液外泌体miRNAs在头颈部鳞状细胞癌中的研究进展

何锦怡, 杨柳. 唾液外泌体miRNAs在头颈部鳞状细胞癌中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(3): 261-266. doi: 10.13201/j.issn.2096-7993.2024.03.016
引用本文: 何锦怡, 杨柳. 唾液外泌体miRNAs在头颈部鳞状细胞癌中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(3): 261-266. doi: 10.13201/j.issn.2096-7993.2024.03.016
HE Jinyi, YANG Liu. Advances in salivary exosomal miRNAs in head and neck squamous carcinoma[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 261-266. doi: 10.13201/j.issn.2096-7993.2024.03.016
Citation: HE Jinyi, YANG Liu. Advances in salivary exosomal miRNAs in head and neck squamous carcinoma[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 261-266. doi: 10.13201/j.issn.2096-7993.2024.03.016

唾液外泌体miRNAs在头颈部鳞状细胞癌中的研究进展

详细信息

Advances in salivary exosomal miRNAs in head and neck squamous carcinoma

More Information
  • 唾液外泌体是指存在于唾液中的直径为30~150 nm的细胞外囊泡,在细胞之间的物质交换和信号转导方面发挥重要作用,能将其携带的脂质、蛋白质、核酸传递至受体细胞,调节受体细胞的生理、病理过程。miRNA作为外泌体中重要的“货物”被转运至受体细胞,调控受体细胞信号通路,从而对疾病的进展起着调节的作用。随着近年来技术手段的发展,大量研究揭示了唾液外泌体miRNA在头颈鳞癌的发生发展中发挥重要作用以及唾液外泌体miRNA在头颈鳞癌的诊断与治疗作用。本文综述了唾液外泌体miRNA在头颈鳞癌中的发生、治疗和预后,并讨论唾液外泌体miRNA作为生物标志物在头颈鳞癌诊断中的潜在前景和重要意义。
  • 加载中
  • [1]

    EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5): 347-357. doi: 10.1038/nrd3978

    [2]

    Sadri Nahand J, Moghoofei M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review[J]. Int J Cancer, 2020, 146(2): 305-320. doi: 10.1002/ijc.32688

    [3]

    He T, Guo X, Li X, et al. Plasma-Derived Exosomal microRNA-130a Serves as a Noninvasive Biomarker for Diagnosis and Prognosis of Oral Squamous Cell Carcinoma[J]. J Oncol, 2021, 2021: 5547911.

    [4]

    Zhao Q, Zheng X, Guo H, et al. Serum Exosomal miR-941 as a promising Oncogenic Biomarker for Laryngeal Squamous Cell Carcinoma[J]. J Cancer, 2020, 11(18): 5329-5344. doi: 10.7150/jca.45394

    [5]

    Chai RC, Lim Y, Frazer IH, et al. A pilot study to compare the detection of HPV-16 biomarkers in salivary oral rinses with tumour p16(INK4a)expression in head and neck squamous cell carcinoma patients[J]. BMC Cancer, 2016, 16: 178. doi: 10.1186/s12885-016-2217-1

    [6]

    Nair S, Tang KD, Kenny L, et al. Salivary exosomes as potential biomarkers in cancer[J]. Oral Oncol, 2018, 84: 31-40. doi: 10.1016/j.oraloncology.2018.07.001

    [7]

    He L, Ping F, Fan Z, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening[J]. Biomed Pharmacother, 2020, 121: 109553. doi: 10.1016/j.biopha.2019.109553

    [8]

    Zlotogorski-Hurvitz A, Dayan D, Chaushu G, et al. Human saliva-derived exosomes: comparing methods of isolation[J]. J Histochem Cytochem, 2015, 63(3): 181-189. doi: 10.1369/0022155414564219

    [9]

    Pedersen A, Sørensen CE, Proctor GB, et al. Salivary secretion in health and disease[J]. J Oral Rehabil, 2018, 45(9): 730-746. doi: 10.1111/joor.12664

    [10]

    Batista T, Chaiben CL, Penteado C, et al. Salivary proteome characterization of alcohol and tobacco dependents[J]. Drug Alcohol Depend, 2019, 204: 107510. doi: 10.1016/j.drugalcdep.2019.06.013

    [11]

    Corsello T, Kudlicki AS, Garofalo RP, et al. Cigarette Smoke Condensate Exposure Changes RNA Content of Extracellular Vesicles Released from Small Airway Epithelial Cells[J]. Cells, 2019, 8(12): 1652. doi: 10.3390/cells8121652

    [12]

    Gallo A, Tandon M, Alevizos I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes[J]. PLoS One, 2012, 7(3): e30679. doi: 10.1371/journal.pone.0030679

    [13]

    Yu D, Li Y, Wang M, et al. Exosomes as a new frontier of cancer liquid biopsy[J]. Mol Cancer, 2022, 21(1): 56. doi: 10.1186/s12943-022-01509-9

    [14]

    Silva J, Garcia V, Rodriguez M, et al. Analysis of exosome release and its prognostic value in human colorectal cancer[J]. Genes Chromosomes Cancer, 2012, 51(4): 409-418. doi: 10.1002/gcc.21926

    [15]

    Li YY, Tao YW, Gao S, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p[J]. EBioMedicine, 2018, 36: 209-220. doi: 10.1016/j.ebiom.2018.09.006

    [16]

    Sun LP, Xu K, Cui J, et al. Cancer associated fibroblast derived exosomal miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4): 1319-1328.

    [17]

    Zhu G, Cao B, Liang X, et al. Small extracellular vesicles containing miR-192/215 mediate hypoxia-induced cancer-associated fibroblast development in head and neck squamous cell carcinoma[J]. Cancer Lett, 2021, 506: 11-22. doi: 10.1016/j.canlet.2021.01.006

    [18]

    Momen-Heravi F, Bala S. Extracellular vesicles in oral squamous carcinoma carry oncogenic miRNA profile and reprogram monocytes via NF-κB pathway[J]. Oncotarget, 2018, 9(78): 34838-34854. doi: 10.18632/oncotarget.26208

    [19]

    Salazar-Ruales C, Arguello JV, López-Cortés A, et al. Salivary MicroRNAs for Early Detection of Head and Neck Squamous Cell Carcinoma: A Case-Control Study in the High Altitude Mestizo Ecuadorian Population[J]. Biomed Res Int, 2018, 2018: 9792730.

    [20]

    Guo L, Guo N. Exosomes: Potent regulators of tumor malignancy and potential bio-tools in clinical application[J]. Crit Rev Oncol Hematol, 2015, 95(3): 346-358. doi: 10.1016/j.critrevonc.2015.04.002

    [21]

    Lu J, Liu QH, Wang F, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 147. doi: 10.1186/s13046-018-0814-3

    [22]

    Hofmann L, Medyany V, Ezić J, et al. Cargo and Functional Profile of Saliva-Derived Exosomes Reveal Biomarkers Specific for Head and Neck Cancer[J]. Front Med(Lausanne), 2022, 9: 904295.

    [23]

    Álvarez-Teijeiro S, Menéndez ST, Villaronga MÁ, et al. Dysregulation of Mir-196b in Head and Neck Cancers Leads to Pleiotropic Effects in the Tumor Cells and Surrounding Stromal Fibroblasts[J]. Sci Rep, 2017, 7(1): 17785. doi: 10.1038/s41598-017-18138-8

    [24]

    Liu CJ, Lin SC, Yang CC, et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma[J]. Head Neck, 2012, 34(2): 219-224. doi: 10.1002/hed.21713

    [25]

    Lu WC, Liu CJ, Tu HF, et al. miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma[J]. Oncotarget, 2016, 7(35): 57254-57267. doi: 10.18632/oncotarget.11138

    [26]

    Mehterov N, Vladimirov B, Sacconi A, et al. Salivary miR-30c-5p as Potential Biomarker for Detection of Oral Squamous Cell Carcinoma[J]. Biomedicines, 2021, 9(9): 1079. doi: 10.3390/biomedicines9091079

    [27]

    Scholtz B, Horváth J, Tar I, et al. Salivary miR-31-5p, miR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma[J]. Pathogens, 2022, 11(2): 229. doi: 10.3390/pathogens11020229

    [28]

    Peng HY, Jiang SS, Hsiao JR, et al. IL-8 induces miR-424-5p expression and modulates SOCS2/STAT5 signaling pathway in oral squamous cell carcinoma[J]. Mol Oncol, 2016, 10(6): 895-909. doi: 10.1016/j.molonc.2016.03.001

    [29]

    Zhou X, Ren Y, Liu A, et al. STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo[J]. Oncol Rep, 2014, 31(5): 2173-2180. doi: 10.3892/or.2014.3114

    [30]

    Harmati M, Tarnai Z, Decsi G, et al. Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells[J]. J Oral Pathol Med, 2017, 46(4): 259-266. doi: 10.1111/jop.12486

    [31]

    Zahran F, Ghalwash D, Shaker O, et al. Salivary microRNAs in oral cancer[J]. Oral Dis, 2015, 21(6): 739-747. doi: 10.1111/odi.12340

    [32]

    Maheswari T, Venugopal A, Sureshbabu NM, et al. Salivary micro RNA as a potential biomarker in oral potentially malignant disorders: A systematic review[J]. Ci Ji Yi Xue Za Zhi, 2018, 30(2): 55-60.

    [33]

    Muhammad jawad khan AZ, Ghulam rabia SAA, Shanza sahar SB, et al. Role of salivary miRNAs and their target genes in oral cancer patients as a potential diagnostic tool[G]. Proceedings of the Annual Meeting of the American Association for Cancer Research. 2020: 80.

    [34]

    Duz MB, Karatas OF, Guzel E, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study[J]. Cell Oncol(Dordr), 2016, 39(2): 187-193. doi: 10.1007/s13402-015-0259-z

    [35]

    Gu Y, Tang S, Wang Z, et al. Identification of key miRNAs and targeted genes involved in the progression of oral squamous cell carcinoma[J]. J Dent Sci, 2022, 17(2): 666-676. doi: 10.1016/j.jds.2021.08.016

    [36]

    Yang Y, Li YX, Yang X, et al. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis[J]. BMC Cancer, 2013, 13: 129. doi: 10.1186/1471-2407-13-129

    [37]

    Momen-Heravi F, Trachtenberg AJ, Kuo WP, et al. Genomewide Study of Salivary MicroRNAs for Detection of Oral Cancer[J]. J Dent Res, 2014, 93(7 Suppl): 86S-93S.

    [38]

    Wu L, Zheng K, Yan C, et al. Genome-wide study of salivary microRNAs as potential noninvasive biomarkers for detection of nasopharyngeal carcinoma[J]. BMC Cancer, 2019, 19(1): 843. doi: 10.1186/s12885-019-6037-y

    [39]

    Ye SB, Li ZL, Luo DH, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma[J]. Oncotarget, 2014, 5(14): 5439-5452. doi: 10.18632/oncotarget.2118

    [40]

    Lin Z, Swan K, Zhang X, et al. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells[J]. J Virol, 2016, 90(7): 3469-3479. doi: 10.1128/JVI.02830-15

    [41]

    Peacock B, Rigby A, Bradford J, et al. Extracellular vesicle microRNA cargo is correlated with HPV status in oropharyngeal carcinoma[J]. J Oral Pathol Med, 2018, 47(10): 954-963 doi: 10.1111/jop.12781

    [42]

    Lee JC, Zhao JT, Gundara J, et al. Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222[J]. J Surg Res, 2015, 196(1): 39-48. doi: 10.1016/j.jss.2015.02.027

    [43]

    Wang J, Zhou Y, Lu J, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma[J]. Med Oncol, 2014, 31(9): 148. doi: 10.1007/s12032-014-0148-8

    [44]

    Gao Q, Liu HT, Xu YQ, et al. Serum-derived exosomes promote CD8+T cells to overexpress PD-1, affecting the prognosis of hypopharyngeal carcinoma[J]. Cancer Cell Int, 2021, 21(1): 584. doi: 10.1186/s12935-021-02294-z

    [45]

    Ludwig S, Sharma P, Wise P, et al. mRNA and miRNA Profiles of Exosomes from Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer[J]. Int J Mol Sci, 2020, 21(22): 8570. doi: 10.3390/ijms21228570

    [46]

    Brunner TF, Probst FA, Troeltzsch M, et al. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells-an in-vitro study[J]. Head Face Med, 2022, 18(1): 21. doi: 10.1186/s13005-022-00322-5

    [47]

    Liu T, Chen G, Sun D, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(9): 808-816.

  • 加载中
计量
  • 文章访问数:  623
  • PDF下载数:  153
  • 施引文献:  0
出版历程
收稿日期:  2022-11-23
刊出日期:  2024-03-03

目录