前庭代偿与治疗机制研究进展

李洁, 时海波. 前庭代偿与治疗机制研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(3): 256-260. doi: 10.13201/j.issn.2096-7993.2024.03.015
引用本文: 李洁, 时海波. 前庭代偿与治疗机制研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(3): 256-260. doi: 10.13201/j.issn.2096-7993.2024.03.015
LI Jie, SHI Haibo. Research advances in the mechanism of vestibular compensation and treatment[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 256-260. doi: 10.13201/j.issn.2096-7993.2024.03.015
Citation: LI Jie, SHI Haibo. Research advances in the mechanism of vestibular compensation and treatment[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 256-260. doi: 10.13201/j.issn.2096-7993.2024.03.015

前庭代偿与治疗机制研究进展

  • 基金项目:
    国家自然科学基金委重点国际合作项目(No:82020108008)
详细信息

Research advances in the mechanism of vestibular compensation and treatment

More Information
  • 与其他感觉系统不同,前庭系统通过“推-拉”的模式维持整个系统的张力平衡,局部功能异常增强或减弱都将导致整个系统的功能障碍。单侧外周前庭受损将引起显著的前庭症状,但其可在数日至数周内逐步自行缓解,该现象被称为“前庭代偿”。由于多数情况下的前庭外周损伤为不可逆性,因此广泛认为中枢机制是前庭代偿的主因。其中,静态症状在数周内消失,代偿较为完全,推测是前庭核团放电再平衡的结果;动态症状的代偿需要更长时间,通过感觉替代、行为替代等方式实现,且代偿不完全。本文简要综述了前庭代偿及治疗机制的研究进展以期为未来的研究工作和临床治疗策略提供参考。
  • 加载中
  • [1]

    Lacour M, Helmchen C, Vidal PP. Vestibular compensation: the neuro-otologist's best friend[J]. J Neurol, 2016, 263 Suppl 1: S54-64.

    [2]

    薛伟轩, 李潜啸, 张洋浔, 等. 前庭代偿中双侧前庭内侧核对输入刺激响应的敏感性变化及其离子机制[J]. 生理学报, 2022, 74(2): 135-144.

    [3]

    Nelson AB, Faulstich M, Moghadam S, et al. BK Channels Are Required for Multisensory Plasticity in the Oculomotor System[J]. Neuron, 2017, 93(1): 211-220. doi: 10.1016/j.neuron.2016.11.019

    [4]

    Eleore L, Vassias I, Bernat I, et al. An in situ hybridization and immunofluorescence study of GABA(A)and GABA(B)receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat[J]. Exp Brain Res, 2005, 160(2): 166-179. doi: 10.1007/s00221-004-1997-8

    [5]

    Yamanaka T, Him A, Cameron SA, et al. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurones after unilateral labyrinthectomy[J]. J Physiol, 2000, 523 Pt 2(Pt 2): 413-424.

    [6]

    Zhou W, Zhou LQ, Shi H, et al. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy[J]. Int J Mol Med, 2016, 38(5): 1481-1489. doi: 10.3892/ijmm.2016.2753

    [7]

    Zhou L, Zhou W, Zhang S, et al. Changes in Histamine Receptors(H1, H2, and H3) Expression in Rat Medial Vestibular Nucleus and Flocculus after Unilateral Labyrinthectomy: Histamine Receptors in Vestibular Compensation[J]. PLoS One, 2013, 8(6): e66684. doi: 10.1371/journal.pone.0066684

    [8]

    Chen ZP, Zhang XY, Peng SY, et al. Histamine H1 Receptor Contributes to Vestibular Compensation[J]. J Neurosci, 2019, 39(3): 420-433. doi: 10.1523/JNEUROSCI.1350-18.2018

    [9]

    Tighilet B, Brezun JM, Sylvie GD, et al. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat[J]. Eur J Neurosci, 2007, 25(1): 47-58. doi: 10.1111/j.1460-9568.2006.05267.x

    [10]

    Tighilet B, Chabbert C. Adult neurogenesis promotes balance recovery after vestibular loss[J]. Prog Neurobiol, 2019, 174: 28-35. doi: 10.1016/j.pneurobio.2019.01.001

    [11]

    Rastoldo G, El Mahmoudi N, Marouane E, et al. Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy[J]. Prog Neurobiol, 2021, 196: 101899. doi: 10.1016/j.pneurobio.2020.101899

    [12]

    Hübner PP, Khan SI, Migliaccio AA. The mammalian efferent vestibular system plays a crucial role in vestibulo-ocular reflex compensation after unilateral labyrinthectomy[J]. J Neurophysiol, 2017, 117(4): 1553-1568. doi: 10.1152/jn.01049.2015

    [13]

    Chang H, Morley BJ, Cullen KE. Loss of α-9 Nicotinic Acetylcholine Receptor Subunit Predominantly Results in Impaired Postural Stability Rather Than Gaze Stability[J]. Front Cell Neurosci, 2021, 15: 799752.

    [14]

    Tighilet B, Bourdet A, Péricat D, et al. SK Channels Modulation Accelerates Equilibrium Recovery in Unilateral Vestibular Neurectomized Rats[J]. Pharmaceuticals(Basel), 2021, 14(12): 1226. doi: 10.3390/ph14121226

    [15]

    Beck R, Günther L, Xiong G, et al. The mixed blessing of treating symptoms in acute vestibular failure-evidence from a 4-aminopyridine experiment[J]. Exp Neurol, 2014, 261: 638-645. doi: 10.1016/j.expneurol.2014.08.013

    [16]

    Yu L, Zhang XY, Cao SL, et al. Na(+)-Ca(2+)Exchanger, Leak K(+)Channel and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Comediate the Histamine-Induced Excitation on Rat Inferior Vestibular Nucleus Neurons[J]. CNS Neurosci Ther, 2016, 22(3): 184-193. doi: 10.1111/cns.12451

    [17]

    Petremann M, Gueguen C, Delgado Betancourt V, et al. Effect of the novel histamine H(4) receptor antagonist SENS-111 on spontaneous nystagmus in a rat model of acute unilateral vestibular loss[J]. Br J Pharmacol, 2020, 177(3): 623-633. doi: 10.1111/bph.14803

    [18]

    Tighilet B, Manrique C, Lacour M. Stress axis plasticity during vestibular compensation in the adult cat[J]. Neuroscience, 2009, 160(4): 716-730. doi: 10.1016/j.neuroscience.2009.02.070

    [19]

    Wang Y, Chen ZP, Yang ZQ, et al. Corticotropin-releasing factor depolarizes rat lateral vestibular nuclear neurons through activation of CRF receptors 1 and 2[J]. Neuropeptides, 2019, 76: 101934. doi: 10.1016/j.npep.2019.05.005

    [20]

    Rastoldo G, Marouane E, El-Mahmoudi N, et al. L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects[J]. Cells, 2022, 11(4): 684. doi: 10.3390/cells11040684

    [21]

    Bringuier CM, Hatat B, Boularand R, et al. Characterization of Thyroid Hormones Antivertigo Effects in a Rat Model of Excitotoxically-Induced Vestibulopathy[J]. Front Neurol, 2022, 13: 877319. doi: 10.3389/fneur.2022.877319

    [22]

    Hall CD, Herdman SJ, Whitney SL, et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline From the Academy of Neurologic Physical Therapy of the American Physical Therapy Association[J]. J Neurol Phys Ther, 2022, 46(2): 118-177. doi: 10.1097/NPT.0000000000000382

    [23]

    Cullen KE. Vestibular processing during natural self-motion: implications for perception and action[J]. Nat Rev Neurosci, 2019, 20(6): 346-363. doi: 10.1038/s41583-019-0153-1

    [24]

    Carcaud J, Franca de Barros F, Idoux E, et al. Long-Lasting Visuo-Vestibular Mismatch in Freely-Behaving Mice Reduces the Vestibulo-Ocular Reflex and Leads to Neural Changes in the Direct Vestibular Pathway[J]. eNeuro, 2017, 4(1): e0290-16

    [25]

    Battilana F, Steurer S, Rizzi G, et al. Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons[J]. Aging Cell, 2020, 19(12): e13274. doi: 10.1111/acel.13274

    [26]

    Sjögren J, Karlberg M, Hickson C, et al. Short-Latency Covert Saccades-The Explanation for Good Dynamic Visual Performance After Unilateral Vestibular Loss?[J]. Front Neurol, 2021, 12: 695064. doi: 10.3389/fneur.2021.695064

    [27]

    Facchini J, Rastoldo G, Xerri C, et al. Unilateral vestibular neurectomy induces a remodeling of somatosensory cortical maps[J]. Prog Neurobiol, 2021, 205: 102119. doi: 10.1016/j.pneurobio.2021.102119

    [28]

    Bhattacharyya N, Gubbels SP, Schwartz SR, et al. Clinical Practice Guideline: Benign Paroxysmal Positional Vertigo(Update)[J]. Otolaryngol Head Neck Surg, 2017, 156(3_suppl): S1-S47.

    [29]

    Rinaudo CN, Schubert MC, Figtree WVC, et al. Human vestibulo-ocular reflex adaptation is frequency selective[J]. J Neurophysiol, 2019, 122(3): 984-993. doi: 10.1152/jn.00162.2019

    [30]

    Todd CJ, Schubert MC, Figtree WVC, et al. Incremental Vestibulo-ocular Reflex Adaptation Training Dynamically Tailored for Each Individual[J]. J Neurol Phys Ther, 2019, 43: S2-S7. doi: 10.1097/NPT.0000000000000269

    [31]

    Rinaudo CN, Schubert MC, Cremer PD, et al. Comparison of Incremental Vestibulo-ocular Reflex Adaptation Training Versus x1 Training in Patients With Chronic Peripheral Vestibular Hypofunction: A Two-Year Randomized Controlled Trial[J]. J Neurol Phys Ther, 2021, 45(4): 246-258. doi: 10.1097/NPT.0000000000000369

    [32]

    Ervin AM, Schubert MC, Migliaccio AA, et al. Incremental Velocity Error as a New Treatment in Vestibular Rehabilitation(INVENT VPT)Trial: study protocol for a randomized controlled crossover trial[J]. Trials, 2021, 22(1): 908. doi: 10.1186/s13063-021-05876-4

    [33]

    Muntaseer Mahfuz M, Schubert MC, Todd CJ, et al. The Effect of Visual Contrast on Human Vestibulo-Ocular Reflex Adaptation[J]. J Assoc Res Otolaryngol, 2018, 19(1): 113-122. doi: 10.1007/s10162-017-0644-6

    [34]

    Klatt BN, Carender WJ, Lin CC, et al. A Conceptual Framework for the Progression of Balance Exercises in Persons with Balance and Vestibular Disorders[J]. Phys Med Rehabil Int, 2015, 2(4): 1044.

    [35]

    Kal EC, Young WR, Ellmers TJ, et al. Balance capacity influences the effects of conscious movement processing on postural control in older adults[J]. Hum Mov Sci, 2022, 82: 102933. doi: 10.1016/j.humov.2022.102933

    [36]

    Sienko KH, Seidler RD, Carender WJ, et al. Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control[J]. Front Neurol, 2018, 9: 944. doi: 10.3389/fneur.2018.00944

  • 加载中
计量
  • 文章访问数:  326
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2022-12-03
修回日期:  2023-01-02
刊出日期:  2024-03-03

目录