枞酸在顺铂耐药鼻咽癌细胞增殖、侵袭、迁移中的作用及分子机制

袁艳艳, 蓝苑钊, 崔毅, 等. 枞酸在顺铂耐药鼻咽癌细胞增殖、侵袭、迁移中的作用及分子机制[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(3): 188-194. doi: 10.13201/j.issn.2096-7993.2024.03.002
引用本文: 袁艳艳, 蓝苑钊, 崔毅, 等. 枞酸在顺铂耐药鼻咽癌细胞增殖、侵袭、迁移中的作用及分子机制[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(3): 188-194. doi: 10.13201/j.issn.2096-7993.2024.03.002
YUAN Yanyan, LAN Yuanzao, CUI Yi, et al. The role and the molecular mechanism of abietic acid in the proliferation, invasion and migration of cisplatin-resistant nasopharyngeal carcinoma cells[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 188-194. doi: 10.13201/j.issn.2096-7993.2024.03.002
Citation: YUAN Yanyan, LAN Yuanzao, CUI Yi, et al. The role and the molecular mechanism of abietic acid in the proliferation, invasion and migration of cisplatin-resistant nasopharyngeal carcinoma cells[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(3): 188-194. doi: 10.13201/j.issn.2096-7993.2024.03.002

枞酸在顺铂耐药鼻咽癌细胞增殖、侵袭、迁移中的作用及分子机制

  • 基金项目:
    湖南省自然科学基金-区域联合基金项目(No:2023JJ50380);郴州市科技计划项目(No:zdyf201936);郴州市第一人民医院优青项目(No:N2020-2)
详细信息

The role and the molecular mechanism of abietic acid in the proliferation, invasion and migration of cisplatin-resistant nasopharyngeal carcinoma cells

More Information
  • 目的 探讨枞酸在顺铂耐药鼻咽癌细胞增殖、侵袭、迁移的作用及分子机制。方法 ① 药物浓度递增法构建顺铂耐药鼻咽癌C666/DDP细胞株。②枞酸对C666/DDP细胞增殖、侵袭及迁移的影响研究:CCK-8法、活性氧(ROS)及线粒体膜电位(MMP)水平检测及裸鼠皮下成瘤实验检测枞酸对C666/DDP细胞体外、体内增殖及凋亡能力的影响;Transwell法检测细胞侵袭和迁移能力。③Western blot及IHC法检测PI3K/AKT/mTOR通路相关蛋白的表达情况。结果 ① 顺铂对C666-1细胞毒性IC50约为25 μmol/L。RI=25 μmol/L/4 μmol/L=6.25,获得耐药性,C666-1-DDP耐药株构建成功。②枞酸可促进C666/DDP细胞凋亡,抑制其增殖,且表现为G2/M期阻滞;Transwell显示枞酸抑制C666/DDP细胞迁移及侵袭能力,提高C666/DDP细胞ROS水平并使MMP降低。③动物实验显示枞酸在体内呈浓度梯度抑制顺铂耐药鼻咽癌的增殖,抑制PI3K/AKT/mTOR信号通路相关蛋白的表达。结论 枞酸可抑制顺铂耐药鼻咽癌细胞增殖、侵袭及迁移,其机制与抑制PI3K/AKT/mTOR信号通路有关。
  • 加载中
  • 图 1  CCK-8实验检测C666-1/DDP细胞耐药性

    图 2  检测枞酸对C666-1/DDP细胞凋亡的影响

    图 3  检测枞酸对C666-1/DDP细胞周期分布及细胞增殖速度的影响

    图 4  枞酸对C666-1/DDP细胞迁移与侵袭的影响

    图 5  枞酸对C666-1/DDP细胞ROS和MMP的影响

    图 6  Western blot结果显示,枞酸抑制C666-1/DDP细胞的PI3K/AKT/mTOR信号通路

    图 7  枞酸在体内抑制C666-1/DDP的增殖

    图 8  枞酸在体内对C666-1/DDP细胞PI3K/AKT/mTOR信号通路的影响

  • [1]

    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [2]

    Chen YP, Chan A, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi: 10.1016/S0140-6736(19)30956-0

    [3]

    Xiang T, Lin YX, Ma W, et al. Vasculogenic mimicry formation in EBV-associated epithelial malignancies[J]. Nat Commun, 2018, 9(1): 5009. doi: 10.1038/s41467-018-07308-5

    [4]

    Zhong L, Dong D, Fang X, et al. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study[J]. EBioMedicine, 2021, 70: 103522. doi: 10.1016/j.ebiom.2021.103522

    [5]

    Tang LL, Chen YP, Chen CB, et al. The Chinese Society of Clinical Oncology(CSCO)clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma[J]. Cancer Commun(Lond), 2021, 41(11): 1195-1227.

    [6]

    Lee A, Ng WT, Chan J, et al. Management of locally recurrent nasopharyngeal carcinoma[J]. Cancer Treat Rev, 2019, 79: 101890. doi: 10.1016/j.ctrv.2019.101890

    [7]

    Long Z, Wang W, Liu W, et al. Trend of nasopharyngeal carcinoma mortality and years of life lost in China and its provinces from 2005 to 2020[J]. Int J Cancer, 2022, 151(5): 684-691. doi: 10.1002/ijc.33998

    [8]

    Ghosh S. Cisplatin: The first metal based anticancer drug[J]. Bioorg Chem, 2019, 88: 102925. doi: 10.1016/j.bioorg.2019.102925

    [9]

    Guan S, Wei J, Huang L, et al. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma[J]. Eur J Med Chem, 2020, 207: 112758. doi: 10.1016/j.ejmech.2020.112758

    [10]

    Isah T. Stress and defense responses in plant secondary metabolites production[J]. Biol Res, 2019, 52(1): 39. doi: 10.1186/s40659-019-0246-3

    [11]

    Khan AW, Farooq M, Haseeb M, et al. Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action[J]. Cells, 2022, 11(8): 1326. doi: 10.3390/cells11081326

    [12]

    Sarwar MS, Zhang HJ, Tsang SW. Perspectives of Plant Natural Products in Inhibition of Cancer Invasion and Metastasis by Regulating Multiple Signaling Pathways[J]. Curr Med Chem, 2018, 25(38): 5057-5087.

    [13]

    Shin SA, Moon SY, Kim WY, et al. Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites[J]. Int J Mol Sci, 2018, 19(9): 2651. doi: 10.3390/ijms19092651

    [14]

    Buommino E, Vollaro A, Nocera FP, et al. Synergistic Effect of Abietic Acid with Oxacillin against Methicillin-Resistant Staphylococcus pseudintermedius[J]. Antibiotics(Basel), 2021, 10(1): 80.

    [15]

    Tretyakova EV, Ma X, Kazakova OB, et al. Abietic, maleopimaric and quinopimaric dipeptide Ugi-4CR derivatives and their potency against influenza A and SARS-CoV-2[J]. Nat Prod Res, 2023, 37(12): 1954-1960. doi: 10.1080/14786419.2022.2112040

    [16]

    Li XQ, Chen Y, Dai GC, et al. Abietic acid ameliorates psoriasis-like inflammation and modulates gut microbiota in mice[J]. J Ethnopharmacol, 2021, 272: 113934. doi: 10.1016/j.jep.2021.113934

    [17]

    Sierra JA, Gilchrist K, Tabares-Guevara JH, et al. Semisynthetic Abietic and Dehydroabietic Acid Derivatives and Triptoquinone Epimers Interfere with LPS-Triggered Activation of Dendritic Cells[J]. Molecules, 2022, 27(19): 6684. doi: 10.3390/molecules27196684

    [18]

    Park JY, Lee YK, Lee DS, et al. Abietic acid isolated from pine resin(Resina Pini)enhances angiogenesis in HUVECs and accelerates cutaneous wound healing in mice[J]. J Ethnopharmacol, 2017, 203: 279-287. doi: 10.1016/j.jep.2017.03.055

    [19]

    Liu X, Chen W, Liu Q, et al. Abietic acid suppresses non-small-cell lung cancer cell growth via blocking IKKβ/NF-κB signaling[J]. Onco Targets Ther, 2019, 12: 4825-4837. doi: 10.2147/OTT.S199161

    [20]

    Haffez H, Osman S, Ebrahim HY, et al. Growth Inhibition and Apoptotic Effect of Pine Extract and Abietic Acid on MCF-7 Breast Cancer Cells via Alteration of Multiple Gene Expressions Using In Vitro Approach[J]. Molecules, 2022, 27(1): 293. doi: 10.3390/molecules27010293

    [21]

    Xu Y, Tong Y, Lei Z, et al. Abietic acid induces ferroptosis via the activation of the HO-1 pathway in bladder cancer cells[J]. Biomed Pharmacother, 2023, 158: 114154. doi: 10.1016/j.biopha.2022.114154

    [22]

    Hsieh YS, Yang SF, Hsieh YH, et al. Erratum: "The Inhibitory Effect of Abietic Acid on Melanoma Cancer Metastasis and Invasiveness In Vitro and In Vivo"[J]. Am J Chin Med, 2017, 45(2): 403. doi: 10.1142/S0192415X1792001X

    [23]

    Yoshida N, Takada T, Yamamura Y, et al. Inhibitory effects of terpenoids on multidrug resistance-associated protein 2-and breast cancer resistance protein-mediated transport[J]. Drug Metab Dispos, 2008, 36(7): 1206-1211. doi: 10.1124/dmd.107.019513

    [24]

    Miao X, Deng Z, Wang S, et al. IAP-1 promoted cisplatin resistance in nasopharyngeal carcinoma via inhibition of caspase-3-mediated apoptosis[J]. Am J Cancer Res, 2021, 11(3): 640-667.

    [25]

    Vasudevan HN, Yom SS. Nasopharyngeal Carcinoma and Its Association with Epstein-Barr Virus[J]. Hematol Oncol Clin North Am, 2021, 35(5): 963-971. doi: 10.1016/j.hoc.2021.05.007

    [26]

    Prawira A, Oosting SF, Chen TW, et al. Systemic therapies for recurrent or metastatic nasopharyngeal carcinoma: a systematic review[J]. Br J Cancer, 2017, 117(12): 1743-1752. doi: 10.1038/bjc.2017.357

    [27]

    Vallejo MJ, Salazar L, Grijalva M. Oxidative Stress Modulation and ROS-Mediated Toxicity in Cancer: A Review on In Vitro Models for Plant-Derived Compounds[J]. Oxid Med Cell Longev, 2017, 2017: 4586068.

    [28]

    Dharmaraja AT. Role of Reactive Oxygen Species(ROS)in Therapeutics and Drug Resistance in Cancer and Bacteria[J]. J Med Chem, 2017, 60(8): 3221-3240. doi: 10.1021/acs.jmedchem.6b01243

    [29]

    Wu MF, Huang YH, Chiu LY, et al. Curcumin Induces Apoptosis of Chemoresistant Lung Cancer Cells via ROS-Regulated p38 MAPK Phosphorylation[J]. Int J Mol Sci, 2022, 23(15): 8248. doi: 10.3390/ijms23158248

    [30]

    Huang Z, Gan S, Zhuang X, et al. Artesunate Inhibits the Cell Growth in Colorectal Cancer by Promoting ROS-Dependent Cell Senescence and Autophagy[J]. Cells, 2022, 11(16): 2472. doi: 10.3390/cells11162472

    [31]

    Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer[J]. Front Oncol, 2014, 4: 64.

    [32]

    Li HL, Deng NH, He XS, et al. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma[J]. Biomark Res, 2022, 10(1): 52. doi: 10.1186/s40364-022-00397-x

    [33]

    Liu T, Sun Q, Li Q, et al. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma[J]. Mol Cancer Ther, 2015, 14(2): 429-439. doi: 10.1158/1535-7163.MCT-14-0548

  • 加载中

(8)

计量
  • 文章访问数:  1290
  • PDF下载数:  538
  • 施引文献:  0
出版历程
收稿日期:  2023-06-28
刊出日期:  2024-03-03

目录