Otof-/-成年鼠基因治疗DPOAE和ABR阈值变化研究

王子菁, 曹麒, 胡少伟, 等. Otof-/-成年鼠基因治疗DPOAE和ABR阈值变化研究[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 49-56. doi: 10.13201/j.issn.2096-7993.2024.01.008
引用本文: 王子菁, 曹麒, 胡少伟, 等. Otof-/-成年鼠基因治疗DPOAE和ABR阈值变化研究[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 49-56. doi: 10.13201/j.issn.2096-7993.2024.01.008
WANG Zijing, CAO Qi, HU Shaowei, et al. Study on gene therapy for DPOAE and ABR threshold changes in adult Otof-/- mice[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(1): 49-56. doi: 10.13201/j.issn.2096-7993.2024.01.008
Citation: WANG Zijing, CAO Qi, HU Shaowei, et al. Study on gene therapy for DPOAE and ABR threshold changes in adult Otof-/- mice[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(1): 49-56. doi: 10.13201/j.issn.2096-7993.2024.01.008

Otof-/-成年鼠基因治疗DPOAE和ABR阈值变化研究

  • 基金项目:
    国家自然科学基金委员会,国家杰出青年科学基金项目(No:82225014);科技部,国家重点研发计划课题(No:2020YFA0908201);湖南省科技创新计划资助(No:2023RC4005)
详细信息

Study on gene therapy for DPOAE and ABR threshold changes in adult Otof-/- mice

More Information
  • 目的 通过分析Otof-/-成年鼠在基因治疗前后各频率畸变产物耳声发射(distortion product otoacoustic emissions, DPOAE)和听觉脑干反应(auditory brainstem response, ABR)的阈值变化及其相关性, 探索治疗后听力恢复的评价方法。方法 经圆窗膜(round window membrane, RWM)路径, 向4周龄Otof-/-成年鼠内耳注射双AAV载体携带的内含肽介导的OTOF基因治疗体系, 检测治疗前后DPOAE与ABR阈值, 免疫荧光染色评估耳畸蛋白(otoferlin)恢复表达的内耳毛细胞比例及突触数量, 并进行统计学分析。结果 AAV-PHP.eB对耳蜗内毛细胞具有高转染率; 治疗体系纠正了Otof-/-成年鼠的听力, 且不影响野生型小鼠听功能。基因治疗后DPOAE阈值与ABR阈值变化在16 kHz处存在显著相关; 术后DPOAE略微上升, 但在术后2个月时出现恢复趋势。结论 基因治疗可显著恢复Otof-/-成年鼠听力, 基因治疗体系手术给药可能会引起听力损伤, 这需要更加精细、轻柔的操作, 以最大程度发挥基因治疗的作用。
  • 加载中
  • 图 1  经RWM注射AAV-PHP.eB-eGFP至成年鼠内耳毛细胞转染情况

    图 2  Otof-/-成年小鼠内耳注射AAV-PHP.eB-Rma-hOTOF后的听力

    图 3  Otof-/-成年小鼠内耳注射AAV-PHP.eB-Rma-hOTOF后otoferlin蛋白恢复表达及突触计数

    图 4  基因治疗前后DPOAE与ABR阈值的相关性分析

  • [1]

    Moser T, Starr A. Auditory neuropathy-neural and synaptic mechanisms[J]. Nat Rev Neurol, 2016, 12(3): 135-149.

    [2]

    Yasunaga S, Grati M, Cohen-Salmon M, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness[J]. Nat Genet, 1999, 21(4): 363-369. doi: 10.1038/7693

    [3]

    Zhang QJ, Han B, Lan L, et al. High frequency of OTOF mutations in Chinese infants with congenital auditory neuropathy spectrum disorder[J]. Clin Genet, 2016, 90(3): 238-246. doi: 10.1111/cge.12744

    [4]

    Manchanda A, Chatterjee P, Bonventre JA, et al. Otoferlin Depletion Results in Abnormal Synaptic Ribbons and Altered Intracellular Calcium Levels in Zebrafish[J]. Sci Rep, 2019, 9(1): 14273. doi: 10.1038/s41598-019-50710-2

    [5]

    Thorpe RK, Azaiez H, Wu P, et al. The natural history of OTOF-related auditory neuropathy spectrum disorders: a multicenter study[J]. Hum Genet, 2022, 141(3-4): 853-863. doi: 10.1007/s00439-021-02340-w

    [6]

    Park JH, Kim AR, Han JH, et al. Outcome of Cochlear Implantation in Prelingually Deafened Children According to Molecular Genetic Etiology[J]. Ear Hear, 2017, 38(5): e316-e324. doi: 10.1097/AUD.0000000000000437

    [7]

    Paquette S, Ahmed GD, Goffi-Gomez MV, et al. Musical and vocal emotion perception for cochlear implants users[J]. Hear Res, 2018, 370: 272-282. doi: 10.1016/j.heares.2018.08.009

    [8]

    Chatterjee M, Zion DJ, Deroche ML, et al. Voice emotion recognition by cochlear-implanted children and their normally-hearing peers[J]. Hear Res, 2015, 322: 151-162. doi: 10.1016/j.heares.2014.10.003

    [9]

    Parker MA. Biotechnology in the treatment of sensorineural hearing loss: foundations and future of hair cell regeneration[J]. J Speech Lang Hear Res, 2011, 54(6): 1709-1731. doi: 10.1044/1092-4388(2011/10-0149)

    [10]

    Bankoti K, Generotti C, Hwa T, et al. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss[J]. Mol Ther MethodsClin Dev, 2021, 21: 209-236. doi: 10.1016/j.omtm.2021.03.005

    [11]

    Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: An update[J]. J Gene Med, 2018, 20(5): e3015. doi: 10.1002/jgm.3015

    [12]

    Tang H, Wang H, Wang S, et al. Hearing of Otof-deficient mice restored by trans-splicing of N-and C-terminal otoferlin[J]. Hum Genet, 2023, 142(2): 289-304. doi: 10.1007/s00439-022-02504-2

    [13]

    Zhang L, Wang H, Xun M, et al. Preclinical evaluation of the efficacy and safety of AAV1-hOTOF in mice and nonhuman primates[J]. Mol Ther MethodsClin Dev, 2023, 31: 101154. doi: 10.1016/j.omtm.2023.101154

    [14]

    Akil O, Dyka F, Calvet C, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model[J]. Proc Natl Acad Sci U S A, 2019, 116(10): 4496-501. doi: 10.1073/pnas.1817537116

    [15]

    Al-Moyed H, Cepeda AP, Jung S, et al. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice[J]. EMBO Mol Med, 2019, 11(1): e9396. doi: 10.15252/emmm.201809396

    [16]

    Qi J, Zhang L, Tan F, et al. Preclinical Efficacy And Safety Evaluation of AAV-OTOF in DFNB9 Mouse Model And Nonhuman Primate[J]. Adv Sci(Weinh), 2023: e2306201.

    [17]

    Shu YL, Lv J, Wang H et al. OR86: AAV1-hOTOF gene therapy trial for autosomal recessive deafness 9(DFNB9)[EB/OL]. Brussels., European Society of Gene and Cell Therapy Congress 2023(ESGCT). [2023-10-27]. https://www.esgctcongress.com/

    [18]

    舒易来, 范新泰, 高子雯, 等. 遗传性耳聋基因治疗专家共识(2023, 上海)中国眼耳鼻喉科杂志[J]. doi: 10.14166/j.issn.1671-2420.2024.01.001.

    [19]

    Konrad-Martin D, Reavis KM, Mcmillan GP, et al. Multivariate DPOAE metrics for identifying changes in hearing: perspectives from ototoxicity monitoring[J]. Int J Audiol, 2012, 51 Suppl 1(Suppl 1): S51-62.

    [20]

    Bramhall NF. Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans[J]. J Acoust Soc Am, 2021, 150(6): 4440. doi: 10.1121/10.0007484

    [21]

    Hu X, Wang J, Yao X, et al. Screened AAV variants permit efficient transduction access to supporting cells and hair cells[J]. Cell Discov, 2019, 5: 49. doi: 10.1038/s41421-019-0115-9

    [22]

    Zhao Y, Zhang L, Wang D, et al. Approaches and Vectors for Efficient Cochlear Gene Transfer in Adult Mouse Models[J]. Biomolecules, 2022, 13(1): 38. doi: 10.3390/biom13010038

    [23]

    Gu X, Wang D, Xu Z, et al. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing[J]. Genome Biol, 2021, 22(1): 86. doi: 10.1186/s13059-021-02311-4

    [24]

    Xue Y, Hu X, Wang D, et al. Gene editing in a Myo6 semi-dominant mouse model rescues auditory function[J]. Mol Ther, 2022, 30(1): 105-118. doi: 10.1016/j.ymthe.2021.06.015

    [25]

    Gyorgy B, Nist-Lund C, Pan B, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss[J]. Nat Med, 2019, 25(7): 1123-1130. doi: 10.1038/s41591-019-0500-9

    [26]

    Drummond MC, Belyantseva IA, Friderici KH, et al. Actin in hair cells and hearing loss[J]. Hear Res, 2012, 288(1-2): 89-99. doi: 10.1016/j.heares.2011.12.003

    [27]

    Walters BJ, Zuo J. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration[J]. Hear Res, 2013, 297: 68-83. doi: 10.1016/j.heares.2012.11.009

    [28]

    Guo Y, Han L, Han S, et al. Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice[J]. Mol Ther Nucleic Acids, 2022, 28: 643-655. doi: 10.1016/j.omtn.2022.04.014

    [29]

    Xiao Q, Xu Z, Xue Y, et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor[J]. Sci Transl Med, 2022, 14(654): eabn0449. doi: 10.1126/scitranslmed.abn0449

    [30]

    Cui C, Wang D, Huang B, et al. Precise detection of CRISPR-Cas9 editing in hair cells in the treatment of autosomal dominant hearing loss[J]. Mol Ther Nucleic Acids, 2022, 29: 400-412. doi: 10.1016/j.omtn.2022.07.016

    [31]

    Zheng Z, Li G, Cui C, et al. Preventing autosomal-dominant hearing loss in Bth mice with CRISPR/CasRx-based RNA editing[J]. Signal Transduct Target Ther, 2022, 7(1): 79. doi: 10.1038/s41392-022-00893-4

    [32]

    Ueberfuhr MA, Fehlberg H, Goodman SS, et al. A DPOAE assessment of outer hair cell integrity in ears with age-related hearing loss[J]. Hear Res, 2016, 332: 137-150. doi: 10.1016/j.heares.2015.11.006

    [33]

    Yoshimura H, Shibata SB, Ranum PT, et al. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation[J]. Sci Rep, 2018, 8(1): 2980. doi: 10.1038/s41598-018-21233-z

    [34]

    Adelman C, Weinberger JM, Sohmer H. How are the inner hair cells and auditory nerve fibers activated without the mediation of the outer hair cells and the cochlear amplifier?[J]. J Basic Clin Physiol Pharmacol, 2010, 21(3): 231-240. doi: 10.1515/JBCPP.2010.21.3.231

    [35]

    Ashmore J. Cochlear outer hair cell motility[J]. Physiol Rev, 2008, 88(1): 173-210. doi: 10.1152/physrev.00044.2006

  • 加载中

(4)

计量
  • 文章访问数:  918
  • PDF下载数:  409
  • 施引文献:  0
出版历程
收稿日期:  2023-11-20
刊出日期:  2024-01-03

目录