MYO15A 基因罕见突变导致常染色体隐性遗传性耳聋的遗传学及听力表型分析

林妘, 许军, 杨涛. MYO15A 基因罕见突变导致常染色体隐性遗传性耳聋的遗传学及听力表型分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 38-43. doi: 10.13201/j.issn.2096-7993.2024.01.006
引用本文: 林妘, 许军, 杨涛. MYO15A 基因罕见突变导致常染色体隐性遗传性耳聋的遗传学及听力表型分析[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(1): 38-43. doi: 10.13201/j.issn.2096-7993.2024.01.006
LIN Yun, XU Jun, YANG Tao. Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(1): 38-43. doi: 10.13201/j.issn.2096-7993.2024.01.006
Citation: LIN Yun, XU Jun, YANG Tao. Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(1): 38-43. doi: 10.13201/j.issn.2096-7993.2024.01.006

MYO15A 基因罕见突变导致常染色体隐性遗传性耳聋的遗传学及听力表型分析

  • 基金项目:
    国家自然科学基金(No:82271157);上海市重点实验室建设项目(No:14DZ2260300)
详细信息
  • 中图分类号: R764.43

Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss

  • 目的 分析 MYO15A 基因突变导致的常染色体隐性遗传性耳聋的表型及基因型特点, 为基因诊断提供依据, 为患者及家庭提供遗传咨询。方法 对上海交通大学医学院附属第九人民医院经二代测序检测诊断为 MYO15A 基因突变导致耳聋的2例散发病例进行基因的突变分析, 并在家系内行Sanger测序验证分析。结合临床资料, 依据美国医学遗传学和基因组学会(American College of Medical Genetics and Genomics, ACMG)变异分类指南对突变位点进行致病性判定。结果 2个散发耳聋家系的先证者表型分别为双侧重度听力损失与完全听力损失。鉴定了 MYO15A 基因4个变异, 其中致病变异1个, 可能致病变异2个, 临床意义未明的剪切位点变异1个。患者Ⅰ携带的c.3524dup (p.Ser1176Valfs*14)变异为已报道致病变异; 携带的c.10082+3G>A剪切位点变异, 根据ACMG指南判定为临床意义未明。患者双侧佩戴助听器后, 右耳平均听阈值37.50 dB, 左耳平均听阈值33.75 dB。患者Ⅱ携带c.7441_7442del (p.Leu2481Glufs*86)、c.10250_10252del (p.Ser3417del), 根据ACMG指南判定为可能致病的。患者右侧人工耳蜗植入术后8年, 听觉行为分级-Ⅱ(categorical auditory performance, CAP-Ⅱ)9分, 言语可懂度分级(speech intelligibility rating, SIR)5分。结论 本研究新发现的 MYO15A 基因罕见的c.7441_7442del突变与剪切位点突变c.10082+3G>A与常染色体隐性遗传性耳聋密切相关, 丰富了 MYO15A 基因突变谱, 为遗传性耳聋的遗传咨询提供依据。其次剪切位点致病性评估的应用为相关位点的分类提供参考。
  • 加载中
  • 图 1  患者Ⅰ家系图、听力图及 MYO15A 基因检测结果

    图 2  患者Ⅱ家系图、听力图及 MYO15A 基因检测结果

    图 3  MYO15A 结构域及外显子示意图及本研究报道的位点

    表 1  本研究 MYO15A 基因变异位点致病性分析

    RS编号 染色体位置 核苷酸氨基酸 转录本外显子 病例编号 听力分级 变异类型 MAF ACMG
    分级标准
    ACMG
    分类
    Clivar DVD SpliceAI DS(DP)* SpliceAI-visual RS(DP)
    rs766187994 chr17:18025638 c.3524 dup
    (p.Ser1176 Valfs*14)
    NM_016239.4;exon2 重度 移码突变 0.000142
    (gnomAD_Exomes in total)
    PVS1,PM2,PM3 P P/LP
    rs1555548136 chr17:18071040 c.10082+3G>A NM_016239.4;exon 61 重度 剪切突变 0.00011
    (3/28258,14KJPN)
    PM2,PM3 VUS AG=0.00 (-37) AL=0.00 (-5) DG=0.01 (-3) DL=0.17 (-5) Ref:D=-0.992(-3)
    D=0.18 (-5)
    Var:D=-0.998(-3)
    D=0.015 (-5)
    rs1213371923 chr17:18054195-18054196 c.7441_7442 del(p.Leu2481 Glufs*86) NM_016239.4;exon 38 完全听力损失 移码突变 0.000014
    (gnomAD_Exomes in total)
    PVS1,PM2 LP
    rs760069953 chr17:18075504 -18075506 c.10250_10252 del(p.Ser3417 del) NM_016239.4;exon 64 完全听力损失 整码突变 0.000028
    (GnomAD_exome in total)
    PM2,PM3,PM4 LP P/LP/VUS
    下载: 导出CSV
  • [1]

    Farjami M, Assadi R, Afzal Javan F, et al. The worldwide frequency of MYO15A gene mutations in patients with non-syndromic hearing loss: A meta-analysis[J]. Iran J Basic Med Sci, 2020, 23(7): 841-848.

    [2]

    Ma J, Ma X, Lin K, et al. Genetic screening of a Chinese cohort of children with hearing loss using a next-generation sequencing panel[J]. Hum Genomics, 2023, 17(1): 1. doi: 10.1186/s40246-022-00449-1

    [3]

    Redowicz MJ. Myosins and deafness[J]. J Muscle Res Cell Motil, 1999, 20(3): 241-248. doi: 10.1023/A:1005403725521

    [4]

    Probst FJ, Fridell RA, Raphael Y, et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene[J]. Science, 1998, 280(5368): 1444-1447. doi: 10.1126/science.280.5368.1444

    [5]

    Nal N, Ahmed ZM, Erkal E, et al. Mutational spectrum of MYO15A: the large N-terminal extension of myosin XVA is required for hearing[J]. Hum Mutat, 2007, 28(10): 1014-1019. doi: 10.1002/humu.20556

    [6]

    Chang MY, Lee C, Han JH, et al. Expansion of phenotypic spectrum of MYO15A pathogenic variants to include postlingual onset of progressive partial deafness[J]. BMC Med Genet, 2018, 19(1): 29. doi: 10.1186/s12881-018-0541-9

    [7]

    Zhang J, Guan J, Wang H, et al. Genotype-phenotype correlation analysis of MYO15A variants in autosomal recessive non-syndromic hearing loss[J]. BMC Med Genet, 2019, 20(1): 60. doi: 10.1186/s12881-019-0790-2

    [8]

    World report on hearing[R]. Geneva: World Health Organization, 2021. Licence: CC BY-NC-SA 3.0 IGO.

    [9]

    王丽燕, 申敏, 梁巍, 等. 扩展版CAP问卷的中文版开发及其信效度研究[J]. 中国听力语言康复科学杂志, 2020, 18(5): 367-369. https://www.cnki.com.cn/Article/CJFDTOTAL-TLKF202005017.htm

    [10]

    王宇, 潘滔, 米思, 等. 中文版言语可懂度分级标准的建立及其信度检验[J]. 听力学及言语疾病杂志, 2013, 21(5): 465-468. https://www.cnki.com.cn/Article/CJFDTOTAL-TLXJ201305008.htm

    [11]

    Oza AM, DiStefano MT, Hemphill SE, et al. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss[J]. Hum Mutat, 2018, 39(11): 1593-613. doi: 10.1002/humu.23630

    [12]

    Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. doi: 10.1038/gim.2015.30

    [13]

    Fu Y, Huang S, Gao X, et al. Analysis of the genotype-phenotype correlation of MYO15A variants in Chinese non-syndromic hearing loss patients[J]. BMC Med Genomics, 2022, 15(1): 71. doi: 10.1186/s12920-022-01201-3

    [14]

    Li W, Guo L, Li Y, et al. A novel recessive truncating mutation in MYO15A causing prelingual sensorineural hearing loss[J]. Int J Pediatr Otorhinolaryngol, 2016, 81: 92-95. doi: 10.1016/j.ijporl.2015.12.013

    [15]

    Findlay GM, Daza RM, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing[J]. Nature, 2018, 562(7726): 217-222. doi: 10.1038/s41586-018-0461-z

    [16]

    Walker LC, Hoya M, Wiggins GAR, et al. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup[J]. Am J Hum Genet, 2023, 110(7): 1046-1067. doi: 10.1016/j.ajhg.2023.06.002

    [17]

    de Sainte Agathe JM, Filser M, Isidor B, et al. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation[J]. Hum Genomics, 2023, 17(1): 7. doi: 10.1186/s40246-023-00451-1

    [18]

    中国听神经病临床诊断与干预多中心研究协作组, 中华耳鼻咽喉头颈外科杂志编辑委员会, 中华医学会耳鼻咽喉头颈外科学分会, 等. 中国听神经病临床实践指南(2022版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(3): 241-262.

    [19]

    Friedman TB, Liang Y, Weber JL, et al. A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17[J]. Nat Genet, 1995, 9(1): 86-91. doi: 10.1038/ng0195-86

    [20]

    Liang Y, Wang A, Probst FJ, et al. Genetic mapping refines DFNB3 to 17p11.2, suggests multiple alleles of DFNB3, and supports homology to the mouse model shaker-2[J]. Am J Hum Genet, 1998, 62(4): 904-915. doi: 10.1086/301786

    [21]

    Liang Y, Wang A, Belyantseva IA, et al. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2[J]. Genomics, 1999, 61(3): 243-258. doi: 10.1006/geno.1999.5976

  • 加载中

(3)

(1)

计量
  • 文章访问数:  407
  • PDF下载数:  269
  • 施引文献:  0
出版历程
收稿日期:  2023-10-13
刊出日期:  2024-01-03

目录