Progress in neural network mechanism of tinnitus using functional magnetic resonance imaging
-
摘要: 耳鸣是在没有外界声刺激的情况下的非正常声音感知,会影响一个人的情绪、记忆、注意力以及精神心理状态,目前对于耳鸣的机制尚不明确。近年耳鸣中枢神经机制的研究引起学者的重视,功能性磁共振成像(functional magnetic resonance imaging,fMRI)作为一种有效的影像学技术积极应用于本方面研究。本文将近几年应用fMRI对耳鸣中枢神经网络的相关研究进行系统总结,揭示了耳鸣相关神经网络(听觉网络、边缘网络、默认模式网络、注意力网络等)之间功能连接的改变。耳鸣的中枢神经机制涉及多个网络,各个网络间相互影响,笔者希望通过了解耳鸣的中枢机制来对耳鸣进行较有针对性的预防和治疗,从而帮助患者摆脱长期耳鸣的困扰。Abstract: Tinnitus refers to the perception of abnormal sound in the absence of external sound stimulation. It can have an impact on a person's mood, memory, attention, and mental state, although the mechanism of tinnitus is still unclear. In recent years, the research on the central neural mechanism of tinnitus has attracted the attention of scholars.Functional magnetic resonance imaging (fMRI), as an effective imaging technology, has been actively employed in this field. This paper provides a systematic summary of studies on the central neural mechanism of tinnitus by fMRI in recent years, revealed the changes of functional connections among tinnitus-related neural networks, such as auditory network, limbic system, default mode network and salience network. The central neural mechanism of tinnitus involves multiple networks that interact with each other. By understanding this mechanism, we hope to develop more targeted prevention and treatment strategies to help patients alleviate long-term tinnitus.
-
Key words:
- tinnitus /
- central mechanism /
- neural network /
- functional connectivity
-
[1] Bhatt JM, Bhattacharyya N, Lin HW. Relationships between tinnitus and the prevalence of anxiety and depression[J]. Laryngoscope, 2017, 127(2): 466-469. doi: 10.1002/lary.26107
[2] Shargorodsky J, Curhan GC, Farwell WR. Prevalence and characteristics of tinnitus among US adults[J]. Am J Med, 2010, 123(8): 711-718. doi: 10.1016/j.amjmed.2010.02.015
[3] Rosing SN, Schmidt JH, Wedderkopp N, et al. Prevalence of tinnitus and hyperacusis in children and adolescents: a systematic review[J]. BMJ Open, 2016, 6(6): e010596. doi: 10.1136/bmjopen-2015-010596
[4] Mahboubi H, Oliaei S, Kiumehr S, et al. The prevalence and characteristics of tinnitus in the youth population of the United States[J]. Laryngoscope, 2013, 123(8): 2001-2008. doi: 10.1002/lary.24015
[5] Jastreboff PJ. Phantom auditory perception(tinnitus): mechanisms of generation and perception[J]. Neurosci Res, 1990, 8(4): 221-254. doi: 10.1016/0168-0102(90)90031-9
[6] 纪波波, 李明, 张剑宁. 功能性磁共振成像应用于耳鸣机制研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2018, 53(2): 150-154. doi: 10.3760/cma.j.issn.1673-0860.2018.02.016
[7] 薛伟, 徐海波, 范文亮. 静息态下耳鸣患者脑区域功能连接的BOLD-fMRI研究[J]. 临床放射学杂志, 2015, 34(5): 689-694. doi: 10.13437/j.cnki.jcr.2015.05.005
[8] Cai WW, Li ZC, Yang QT, et al. Abnormal Spontaneous Neural Activity of the Central Auditory System Changes the Functional Connectivity in the Tinnitus Brain: A Resting-State Functional MRI Study[J]. Front Neurosci, 2019, 13: 1314. doi: 10.3389/fnins.2019.01314
[9] Davies J, Gander PE, Andrews M, et al. Auditory network connectivity in tinnitus patients: a resting-state fMRI study[J]. Int J Audiol, 2014, 53(3): 192-198. doi: 10.3109/14992027.2013.846482
[10] Job A, Jaroszynski C, Kavounoudias A, et al. Functional Connectivity in Chronic Nonbothersome Tinnitus Following Acoustic Trauma: A Seed-Based Resting-State Functional Magnetic Resonance Imaging Study[J]. Brain Connect, 2020, 10(6): 279-291. doi: 10.1089/brain.2019.0712
[11] Minami SB, Oishi N, Watabe T, et al. Auditory Related Resting State fMRI Functional Connectivity in Tinnitus Patients: Tinnitus Diagnosis Performance[J]. Otol Neurotol, 2018, 39(1): 1-5. doi: 10.1097/MAO.0000000000001626
[12] Zhang J, Chen YC, Feng X, et al. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus[J]. Eur J Radiol, 2015, 84(7): 1277-1284. doi: 10.1016/j.ejrad.2015.04.006
[13] Leaver AM, Turesky TK, Seydell-Greenwald A, et al. Intrinsic network activity in tinnitus investigated using functional MRI[J]. Hum Brain Mapp, 2016, 37(8): 2717-2735. doi: 10.1002/hbm.23204
[14] Møller AR. Neural plasticity in tinnitus[J]. Prog Brain Res, 2006, 157: 365-372.
[15] De Ridder D, Elgoyhen AB, Romo R, et al. Phantom percepts: tinnitus and pain as persisting aversive memory networks[J]. Proc Natl Acad Sci USA, 2011, 108(20): 8075-8080. doi: 10.1073/pnas.1018466108
[16] Lv H, Liu C, Wang Z, et al. Altered functional connectivity of the thalamus in tinnitus patients is correlated with symptom alleviation after sound therapy[J]. Brain Imaging Behav, 2020, 14(6): 2668-2678. doi: 10.1007/s11682-019-00218-0
[17] 杨海弟, 郑亿庆, 区永康, 等. 耳鸣患者静息态fMRI的局部区域一致性研究[J]. 中华耳科学杂志, 2014, 12(2): 203-206. doi: 10.3969/j.issn.1672-2922.2014.02.04
[18] Chen YC, Xia W, Chen H, et al. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex[J]. Hum Brain Mapp, 2017, 38(5): 2384-2397. doi: 10.1002/hbm.23525
[19] Xu JJ, Cui J, Feng Y, et al. Chronic Tinnitus Exhibits Bidirectional Functional Dysconnectivity in Frontostriatal Circuit[J]. Front Neurosci, 2019, 13: 1299. doi: 10.3389/fnins.2019.01299
[20] Qu T, Qi Y, Yu S, et al. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram[J]. Neuroscience, 2019, 408: 31-45. doi: 10.1016/j.neuroscience.2019.03.054
[21] Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus[J]. Neuron, 2010, 66(6): 819-826. doi: 10.1016/j.neuron.2010.04.032
[22] Leaver AM, Renier L, Chevillet MA, et al. Dysregulation of limbic and auditory networks in tinnitus[J]. Neuron, 2011, 69(1): 33-43. doi: 10.1016/j.neuron.2010.12.002
[23] Rauschecker JP, May ES, Maudoux A, et al. Frontostriatal Gating of Tinnitus and Chronic Pain[J]. Trends Cogn Sci, 2015, 19(10): 567-578. doi: 10.1016/j.tics.2015.08.002
[24] Hullfish J, Abenes I, Yoo HB, et al. Frontostriatal network dysfunction as a domain-general mechanism underlying phantom perception[J]. Hum Brain Mapp, 2019, 40(7): 2241-2251. doi: 10.1002/hbm.24521
[25] Hinkley LBN, Larson PS, Henderson Sabes J, et al. Striatal networks for tinnitus treatment targeting[J]. Hum Brain Mapp, 2022, 43(2): 633-646. doi: 10.1002/hbm.25676
[26] Shulman GL, Fiez JA, Corbetta M, et al. Common Blood Flow Changes across Visual Tasks: Ⅱ. Decreases in Cerebral Cortex[J]. J Cogn Neurosci, 1997, 9(5): 648-663. doi: 10.1162/jocn.1997.9.5.648
[27] Chen YC, Zhang J, Li XW, et al. Altered intra-and interregional synchronization in resting-state cerebral networks associated with chronic tinnitus[J]. Neural Plast, 2015, 2015: 475382.
[28] Seydell-Greenwald A, Leaver AM, Turesky TK, et al. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus[J]. Brain Res, 2012, 1485: 22-39. doi: 10.1016/j.brainres.2012.08.052
[29] Chen YC, Liu S, Lv H, et al. Abnormal Resting-State Functional Connectivity of the Anterior Cingulate Cortex in Unilateral Chronic Tinnitus Patients[J]. Front Neurosci, 2018, 12: 9. doi: 10.3389/fnins.2018.00009
[30] Araneda R, Renier L, Dricot L, et al. A key role of the prefrontal cortex in the maintenance of chronic tinnitus: An fMRI study using a Stroop task[J]. Neuroimage Clin, 2017, 17: 325-334.
[31] Chen YC, Chen H, Bo F, et al. Tinnitus distress is associated with enhanced resting-state functional connectivity within the default mode network[J]. Neuropsychiatr Dis Treat, 2018, 14: 1919-1927. doi: 10.2147/NDT.S164619
[32] Chen YC, Zhang H, Kong Y, et al. Alterations of the default mode network and cognitive impairment in patients with unilateral chronic tinnitus[J]. Quant Imaging Med Surg, 2018, 8(10): 1020-1029. doi: 10.21037/qims.2018.11.04
[33] Carpenter-Thompson JR, Schmidt SA, Husain FT. Neural Plasticity of Mild Tinnitus: An fMRI Investigation Comparing Those Recently Diagnosed with Tinnitus to Those That Had Tinnitus for a Long Period of Time[J]. Neural Plast, 2015, 2015: 161478.
[34] Schmidt SA, Akrofi K, Carpenter-Thompson JR, et al. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss[J]. PLoS One, 2013, 8(10): e76488. doi: 10.1371/journal.pone.0076488
[35] Schmidt SA, Carpenter-Thompson J, Husain FT. Connectivity of precuneus to the default mode and dorsal attention networks: A possible invariant marker of long-term tinnitus[J]. Neuroimage Clin, 2017, 16: 196-204. doi: 10.1016/j.nicl.2017.07.015
[36] Washington SD, Gordon EM, Brar J, et al. Dysmaturation of the default mode network in autism[J]. Hum Brain Mapp, 2014, 35(4): 1284-1296. doi: 10.1002/hbm.22252
[37] Olivito G, Clausi S, Laghi F, et al. Resting-State Functional Connectivity Changes Between Dentate Nucleus and Cortical Social Brain Regions in Autism Spectrum Disorders[J]. Cerebellum, 2017, 16(2): 283-292. doi: 10.1007/s12311-016-0795-8
[38] Greicius M. Resting-state functional connectivity in neuropsychiatric disorders[J]. Curr Opin Neurol, 2008, 21(4): 424-430. doi: 10.1097/WCO.0b013e328306f2c5
[39] Lee H, Lee DK, Park K, et al. Default mode network connectivity is associated with long-term clinical outcome in patients with schizophrenia[J]. Neuroimage Clin, 2019, 22: 101805. doi: 10.1016/j.nicl.2019.101805
[40] Binnewijzend MA, Schoonheim MM, Sanz-Arigita E, et al. Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment[J]. Neurobiol Aging, 2012, 33(9): 2018-2028. doi: 10.1016/j.neurobiolaging.2011.07.003
[41] Lanting C, WozAniak A, van Dijk P, et al. Tinnitus-and Task-Related Differences in Resting-State Networks[J]. Adv Exp Med Biol, 2016, 894: 175-187.
[42] Seydell-Greenwald A, Leaver AM, Turesky TK, et al. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus[J]. Brain Res, 2012, 1485: 22-39. doi: 10.1016/j.brainres.2012.08.052
[43] Hu H, Lyu Y, Li S, et al. Aberrant Resting-State Functional Connectivity of the Dorsal Attention Network in Tinnitus[J]. Neural Plast, 2021, 2021: 2804533.
[44] Schmidt SA, Akrofi K, Carpenter-Thompson JR, et al. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss[J]. PLoS One, 2013, 8(10): e76488. doi: 10.1371/journal.pone.0076488
[45] Husain FT. Neural networks of tinnitus in humans: Elucidating severity and habituation[J]. Hear Res, 2016, 334: 37-48. doi: 10.1016/j.heares.2015.09.010
[46] Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci USA, 2005, 102(27): 9673-9678. doi: 10.1073/pnas.0504136102
[47] Shahsavarani S, Schmidt SA, Khan RA, et al. Salience, emotion, and attention: The neural networks underlying tinnitus distress revealed using music and rest[J]. Brain Res, 2021, 1755: 147277. doi: 10.1016/j.brainres.2021.147277
[48] 赖仁淙, 马鑫. 听力损失与耳鸣的开关—阿控门[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(7): 493-495. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201707001.htm
[49] Luan Y, Wang C, Jiao Y, et al. Prefrontal-Temporal Pathway Mediates the Cross-Modal and Cognitive Reorganization in Sensorineural Hearing Loss With or Without Tinnitus: A Multimodal MRI Study[J]. Front Neurosci, 2019, 13: 222. doi: 10.3389/fnins.2019.00222
[50] Xu XM, Jiao Y, Tang TY, et al. Altered Spatial and Temporal Brain Connectivity in the Salience Network of Sensorineural Hearing Loss and Tinnitus[J]. Front Neurosci, 2019, 13: 246. doi: 10.3389/fnins.2019.00246
[51] Trevis KJ, Tailby C, Grayden DB, et al. Identification of a Neurocognitive Mechanism Underpinning Awareness of Chronic Tinnitus[J]. Sci Rep, 2017, 7(1): 15220. doi: 10.1038/s41598-017-15574-4
[52] Mohamad N, Hoare DJ, Hall DA. The consequences of tinnitus and tinnitus severity on cognition: A review of the behavioural evidence[J]. Hear Res, 2016, 332: 199-209. doi: 10.1016/j.heares.2015.10.001
[53] Tegg-Quinn S, Bennett RJ, Eikelboom RH, et al. The impact of tinnitus upon cognition in adults: A systematic review[J]. Int J Audiol, 2016, 55(10): 533-540. doi: 10.1080/14992027.2016.1185168
[54] Jensen M, Hüttenrauch E, Müller-Mazzotta J, et al. On the impairment of executive control of attention in chronic tinnitus: Evidence from the attention network test[J]. Behav Brain Res, 2021, 414: 113493. doi: 10.1016/j.bbr.2021.113493
计量
- 文章访问数: 1425
- PDF下载数: 1363
- 施引文献: 0