Progress in the relationship between head and neck squamous cell carcinom and the microbial community
-
摘要: 微生物是影响人类健康平衡的重要因素之一,它们与许多肿瘤的关系已经得到证实。然而微生物与头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)之间的关系尚不清楚,微生物对HNSCC发病率和预后的影响不容忽视。因此本文系统而全面地综述了HNSCC与相关微生物微生态失调的流行病学研究,并探讨它们之间的关系。Abstract: Microorganisms are one of the important factors which maintain the homeostasis of human health. Despite recent advances, the relationship between microorganisms and head and neck squamous cell carcinoma (HNSCC) is still unclear, and the impact of microorganisms on the incidence and prognosis of HNSCC cannot be neglected. Therefore, this article provides a systematic and comprehensive review summarizing the epidemiological evidence of microbial dysbiosis related to HNSCC and discusses the associations between them.
-
[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] 涂晓敏, 任建君, 赵宇. 头颈鳞状细胞癌危险因素及遗传风险的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(5): 391-396. doi: 10.13201/j.issn.2096-7993.2022.05.015 https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2022.05.015
[3] Schippa S, Conte MP. Dysbiotic events in gut microbiota: impact on human health[J]. Nutrients, 2014, 6(12): 5786-805. doi: 10.3390/nu6125786
[4] Grice EA, Segre JA. The human microbiome: our second genome[J]. Annu Rev Genomics Hum Genet, 2012, 13: 151-170. doi: 10.1146/annurev-genom-090711-163814
[5] Bosco N, Noti M. The aging gut microbiome and its impact on host immunity[J]. Genes Immun, 2021, 22(5-6): 289-303. doi: 10.1038/s41435-021-00126-8
[6] 曾泉, 李旻珉, 胡国华. 功能保全策略在喉癌治疗中的应用[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(12): 1186-1190.
[7] Hayes RB, Ahn J, Fan X, et al. Association of Oral Microbiome With Risk for Incident Head and Neck Squamous Cell Cancer[J]. JAMA Oncol, 2018, 4(3): 358-365. doi: 10.1001/jamaoncol.2017.4777
[8] Gong H, Shi Y, Xiao X, et al. Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma[J]. Sci Rep, 2017, 7(1): 5507. doi: 10.1038/s41598-017-05576-7
[9] Shin JM, Luo T, Kamarajan P, et al. Microbial Communities Associated with Primary and Metastatic Head and Neck Squamous Cell Carcinoma-A High Fusobacterial and Low Streptococcal Signature[J]. Sci Rep, 2017, 7(1): 9934. doi: 10.1038/s41598-017-09786-x
[10] Dong Z, Zhang C, Zhao Q, et al. Alterations of bacterial communities of vocal cord mucous membrane increases the risk for glottic laryngeal squamous cell carcinoma[J]. J Cancer, 2021, 12(13): 4049-4063. doi: 10.7150/jca.54221
[11] Hsueh CY, Gong H, Cong N, et al. Throat Microbial Community Structure and Functional Changes in Postsurgery Laryngeal Carcinoma Patients[J]. Appl Environ Microbiol, 2020, 86(24): e01849-01820. http://pubmed.ncbi.nlm.nih.gov/33008819/
[12] Wang H, Funchain P, Bebek G, et al. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas[J]. Genome Med, 2017, 9(1): 14. doi: 10.1186/s13073-017-0405-5
[13] Chen Z, Wong PY, Ng C, et al. The Intersection between Oral Microbiota, Host Gene Methylation and Patient Outcomes in Head and Neck Squamous Cell Carcinoma[J]. Cancers(Basel), 2020, 12(11): 3425.
[14] Gong H, Shi Y, Zhou L, et al. Helicobacter pylori infection of the larynx may be an emerging risk factor for laryngeal squamous cell carcinoma[J]. Clin Transl Oncol, 2012, 14(12): 905-910. doi: 10.1007/s12094-012-0879-y
[15] Gong HL, Shi Y, Shi Y, et al. Reduced expression of mutS homolog 2 and mutL homolog 1 affects overall survival in laryngeal squamous cell carcinoma patients: Investigation into a potential cause[J]. Oncol Rep, 2013, 30(3): 1371-1379. doi: 10.3892/or.2013.2559
[16] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
[17] Zhou J, Wang L, Yuan R, et al. Signatures of Mucosal Microbiome in Oral Squamous Cell Carcinoma Identified Using a Random Forest Model[J]. Cancer Manag Res, 2020, 12: 5353-5363. doi: 10.2147/CMAR.S251021
[18] Takahashi Y, Park J, Hosomi K, et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing[J]. J Oral Biosci, 2019, 61(2): 120-128. doi: 10.1016/j.job.2019.03.003
[19] Perera M, Al-Hebshi NN, Perera I, et al. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma[J]. J Dent Res, 2018, 97(6): 725-732. doi: 10.1177/0022034518767118
[20] Su SC, Chang LC, Huang HD, et al. Oral microbial dysbiosis and its performance in predicting oral cancer[J]. Carcinogenesis, 2021, 42(1): 127-135. doi: 10.1093/carcin/bgaa062
[21] Peters BA, Wu J, Pei Z, et al. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers[J]. Cancer Res, 2017, 77(23): 6777-6787. doi: 10.1158/0008-5472.CAN-17-1296
[22] Sarkar P, Malik S, Laha S, et al. Dysbiosis of Oral Microbiota During Oral Squamous Cell Carcinoma Development[J]. Front Oncol, 2021, 11: 614448. doi: 10.3389/fonc.2021.614448
[23] Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment[J]. Oncotarget, 2016, 7(32): 51320-51334. doi: 10.18632/oncotarget.9710
[24] Yang CY, Yeh YM, Yu HY, et al. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging[J]. Front Microbiol, 2018, 9: 862. doi: 10.3389/fmicb.2018.00862
[25] Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral Fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients[J]. Sci Rep, 2021, 11(1): 7870. doi: 10.1038/s41598-021-86816-9
[26] Granato DC, Neves LX, Trino LD, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients[J]. Biochim Biophys Acta Proteins Proteom, 2021, 1869(8): 140659. doi: 10.1016/j.bbapap.2021.140659
[27] Ganly I, Yang L, Giese RA, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus[J]. Int J Cancer, 2019, 145(3): 775-784 doi: 10.1002/ijc.32152
[28] Wang H, Funchain P, Bebek G, et al. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas[J]. Genome Med, 2017, 9(1): 14. doi: 10.1186/s13073-017-0405-5
[29] Wang J, Sun F, Lin X, et al. Cytotoxic T cell responses to Streptococcus are associated with improved prognosis of oral squamous cell carcinoma[J]. Exp Cell Res, 2018, 362(1): 203-208. doi: 10.1016/j.yexcr.2017.11.018
[30] Au KH, Ngan R, Ng A, et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy(IMRT)in Hong Kong: A report of 3328 patients(HKNPCSG 1301 study)[J]. Oral Oncol, 2018, 77: 16-21. doi: 10.1016/j.oraloncology.2017.12.004
[31] Epstein MA, Achong BG, Barr YM. VIRUS Particles In Cultured Lymphoblasts From Burkitt's Lymphoma[J]. Lancet, 1964, 1(7335): 702-723. http://www.onacademic.com/detail/journal_1000036174882810_a9b1.html
[32] Debelius JW, Huang T, Cai Y, et al. Subspecies Niche Specialization in the Oral Microbiome Is Associated with Nasopharyngeal Carcinoma Risk[J]. mSystems, 2020, 5(4): e00065-20. http://www.socolar.com/Article/Index?aid=200259999705&jid=200000168821
[33] Ueda S, Uchiyama S, Azzi T, et al. Oropharyngeal group A streptococcal colonization disrupts latent Epstein-Barr virus infection[J]. J Infect Dis, 2014, 209(2): 255-264. doi: 10.1093/infdis/jit428
[34] Panda M, Rai AK, Rahman T, et al. Alterations of salivary microbia community associated with oropharyngeal and hypopharyngeal squamous cell carcinoma patients[J]. Arch Microbiol, 2020, 202(4): 785-805. doi: 10.1007/s00203-019-01790-1
[35] Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli[J]. Nature, 2020, 580(7802): 269-273. doi: 10.1038/s41586-020-2080-8
[36] Barrett M, Hand CK, Shanahan F, et al. Mutagenesis by Microbe: the Role of the Microbiota in Shaping the Cancer Genome[J]. Trends Cancer, 2020, 6(4): 277-287. doi: 10.1016/j.trecan.2020.01.019
[37] Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. Wnt/β-Catenin Signaling as a Molecular Target by Pathogenic Bacteria[J]. Front Immunol, 2019, 10: 2135. doi: 10.3389/fimmu.2019.02135
[38] Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. doi: 10.1016/j.chom.2013.07.012
[39] Kadosh E, Snir-Alkalay I, Venkatachalam A, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic[J]. Nature, 2020, 586(7827): 133-138. doi: 10.1038/s41586-020-2541-0
[40] Kumar AT, Knops A, Swendseid B, et al. Prognostic Significance of Tumor-Associated Macrophage Content in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis[J]. Front Oncol, 2019, 9: 656. doi: 10.3389/fonc.2019.00656
[41] Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral Fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients[J]. Sci Rep, 2021, 11(1): 7870. doi: 10.1038/s41598-021-86816-9
[42] Irfan M, Delgado R, Frias-Lopez J. The Oral Microbiome and Cancer[J]. Front Immunol, 2020, 11: 591088. doi: 10.3389/fimmu.2020.591088
[43] Yang SF, Huang HD, Fan WL, et al. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer[J]. Oral Oncol, 2018, 77: 1-8. doi: 10.1016/j.oraloncology.2017.12.005
[44] Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: An update[J]. J Control Release, 2020, 323: 253-268. http://www.sciencedirect.com/science/article/pii/S0168365920302455
[45] Zielińska K, Karczmarek-Borowska B, Kwasniak K, et al. Salivary IL-17A, IL-17F, and TNF-α Are Associated with Disease Advancement in Patients with Oral and Oropharyngeal Cancer[J]. J Immunol Res, 2020, 2020: 3928504. http://www.xueshufan.com/publication/3048956648
[46] Forster SC, Kumar N, Anonye BO, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses[J]. Nat Biotechnol, 2019, 37(2): 186-192. doi: 10.1038/s41587-018-0009-7
[47] Kang DD, Li F, Kirton E, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies[J]. PeerJ, 2019, 7: e7359. doi: 10.7717/peerj.7359
[48] Weinroth MD, Belk AD, Dean C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies[J]. J Anim Sci, 2022, 100(2): 346. http://pubmed.ncbi.nlm.nih.gov/35106579/
计量
- 文章访问数: 1142
- PDF下载数: 761
- 施引文献: 0