头颈部鳞状细胞癌与微生物关系的研究进展

刘晨阳, 李育军, 董振, 等. 头颈部鳞状细胞癌与微生物关系的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(6): 498-502. doi: 10.13201/j.issn.2096-7993.2023.06.019
引用本文: 刘晨阳, 李育军, 董振, 等. 头颈部鳞状细胞癌与微生物关系的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(6): 498-502. doi: 10.13201/j.issn.2096-7993.2023.06.019
LIU Chenyang, LI Yujun, DONG Zhen, et al. Progress in the relationship between head and neck squamous cell carcinom and the microbial community[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(6): 498-502. doi: 10.13201/j.issn.2096-7993.2023.06.019
Citation: LIU Chenyang, LI Yujun, DONG Zhen, et al. Progress in the relationship between head and neck squamous cell carcinom and the microbial community[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(6): 498-502. doi: 10.13201/j.issn.2096-7993.2023.06.019

头颈部鳞状细胞癌与微生物关系的研究进展

  • 基金项目:
    山西医科大学博士启动基金资助项目(No:03201628);山西省基础研究计划自然科学基金(No:20210302123250);山西医科大学第一医院136专项经费科研项目
详细信息

Progress in the relationship between head and neck squamous cell carcinom and the microbial community

More Information
  • 微生物是影响人类健康平衡的重要因素之一,它们与许多肿瘤的关系已经得到证实。然而微生物与头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)之间的关系尚不清楚,微生物对HNSCC发病率和预后的影响不容忽视。因此本文系统而全面地综述了HNSCC与相关微生物微生态失调的流行病学研究,并探讨它们之间的关系。
  • 加载中
  • [1]

    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [2]

    涂晓敏, 任建君, 赵宇. 头颈鳞状细胞癌危险因素及遗传风险的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(5): 391-396. doi: 10.13201/j.issn.2096-7993.2022.05.015 https://lceh.whuhzzs.com/article/doi/10.13201/j.issn.2096-7993.2022.05.015

    [3]

    Schippa S, Conte MP. Dysbiotic events in gut microbiota: impact on human health[J]. Nutrients, 2014, 6(12): 5786-805. doi: 10.3390/nu6125786

    [4]

    Grice EA, Segre JA. The human microbiome: our second genome[J]. Annu Rev Genomics Hum Genet, 2012, 13: 151-170. doi: 10.1146/annurev-genom-090711-163814

    [5]

    Bosco N, Noti M. The aging gut microbiome and its impact on host immunity[J]. Genes Immun, 2021, 22(5-6): 289-303. doi: 10.1038/s41435-021-00126-8

    [6]

    曾泉, 李旻珉, 胡国华. 功能保全策略在喉癌治疗中的应用[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(12): 1186-1190.

    [7]

    Hayes RB, Ahn J, Fan X, et al. Association of Oral Microbiome With Risk for Incident Head and Neck Squamous Cell Cancer[J]. JAMA Oncol, 2018, 4(3): 358-365. doi: 10.1001/jamaoncol.2017.4777

    [8]

    Gong H, Shi Y, Xiao X, et al. Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma[J]. Sci Rep, 2017, 7(1): 5507. doi: 10.1038/s41598-017-05576-7

    [9]

    Shin JM, Luo T, Kamarajan P, et al. Microbial Communities Associated with Primary and Metastatic Head and Neck Squamous Cell Carcinoma-A High Fusobacterial and Low Streptococcal Signature[J]. Sci Rep, 2017, 7(1): 9934. doi: 10.1038/s41598-017-09786-x

    [10]

    Dong Z, Zhang C, Zhao Q, et al. Alterations of bacterial communities of vocal cord mucous membrane increases the risk for glottic laryngeal squamous cell carcinoma[J]. J Cancer, 2021, 12(13): 4049-4063. doi: 10.7150/jca.54221

    [11]

    Hsueh CY, Gong H, Cong N, et al. Throat Microbial Community Structure and Functional Changes in Postsurgery Laryngeal Carcinoma Patients[J]. Appl Environ Microbiol, 2020, 86(24): e01849-01820. http://pubmed.ncbi.nlm.nih.gov/33008819/

    [12]

    Wang H, Funchain P, Bebek G, et al. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas[J]. Genome Med, 2017, 9(1): 14. doi: 10.1186/s13073-017-0405-5

    [13]

    Chen Z, Wong PY, Ng C, et al. The Intersection between Oral Microbiota, Host Gene Methylation and Patient Outcomes in Head and Neck Squamous Cell Carcinoma[J]. Cancers(Basel), 2020, 12(11): 3425.

    [14]

    Gong H, Shi Y, Zhou L, et al. Helicobacter pylori infection of the larynx may be an emerging risk factor for laryngeal squamous cell carcinoma[J]. Clin Transl Oncol, 2012, 14(12): 905-910. doi: 10.1007/s12094-012-0879-y

    [15]

    Gong HL, Shi Y, Shi Y, et al. Reduced expression of mutS homolog 2 and mutL homolog 1 affects overall survival in laryngeal squamous cell carcinoma patients: Investigation into a potential cause[J]. Oncol Rep, 2013, 30(3): 1371-1379. doi: 10.3892/or.2013.2559

    [16]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [17]

    Zhou J, Wang L, Yuan R, et al. Signatures of Mucosal Microbiome in Oral Squamous Cell Carcinoma Identified Using a Random Forest Model[J]. Cancer Manag Res, 2020, 12: 5353-5363. doi: 10.2147/CMAR.S251021

    [18]

    Takahashi Y, Park J, Hosomi K, et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing[J]. J Oral Biosci, 2019, 61(2): 120-128. doi: 10.1016/j.job.2019.03.003

    [19]

    Perera M, Al-Hebshi NN, Perera I, et al. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma[J]. J Dent Res, 2018, 97(6): 725-732. doi: 10.1177/0022034518767118

    [20]

    Su SC, Chang LC, Huang HD, et al. Oral microbial dysbiosis and its performance in predicting oral cancer[J]. Carcinogenesis, 2021, 42(1): 127-135. doi: 10.1093/carcin/bgaa062

    [21]

    Peters BA, Wu J, Pei Z, et al. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers[J]. Cancer Res, 2017, 77(23): 6777-6787. doi: 10.1158/0008-5472.CAN-17-1296

    [22]

    Sarkar P, Malik S, Laha S, et al. Dysbiosis of Oral Microbiota During Oral Squamous Cell Carcinoma Development[J]. Front Oncol, 2021, 11: 614448. doi: 10.3389/fonc.2021.614448

    [23]

    Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment[J]. Oncotarget, 2016, 7(32): 51320-51334. doi: 10.18632/oncotarget.9710

    [24]

    Yang CY, Yeh YM, Yu HY, et al. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging[J]. Front Microbiol, 2018, 9: 862. doi: 10.3389/fmicb.2018.00862

    [25]

    Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral Fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients[J]. Sci Rep, 2021, 11(1): 7870. doi: 10.1038/s41598-021-86816-9

    [26]

    Granato DC, Neves LX, Trino LD, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients[J]. Biochim Biophys Acta Proteins Proteom, 2021, 1869(8): 140659. doi: 10.1016/j.bbapap.2021.140659

    [27]

    Ganly I, Yang L, Giese RA, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus[J]. Int J Cancer, 2019, 145(3): 775-784 doi: 10.1002/ijc.32152

    [28]

    Wang H, Funchain P, Bebek G, et al. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas[J]. Genome Med, 2017, 9(1): 14. doi: 10.1186/s13073-017-0405-5

    [29]

    Wang J, Sun F, Lin X, et al. Cytotoxic T cell responses to Streptococcus are associated with improved prognosis of oral squamous cell carcinoma[J]. Exp Cell Res, 2018, 362(1): 203-208. doi: 10.1016/j.yexcr.2017.11.018

    [30]

    Au KH, Ngan R, Ng A, et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy(IMRT)in Hong Kong: A report of 3328 patients(HKNPCSG 1301 study)[J]. Oral Oncol, 2018, 77: 16-21. doi: 10.1016/j.oraloncology.2017.12.004

    [31]

    Epstein MA, Achong BG, Barr YM. VIRUS Particles In Cultured Lymphoblasts From Burkitt's Lymphoma[J]. Lancet, 1964, 1(7335): 702-723. http://www.onacademic.com/detail/journal_1000036174882810_a9b1.html

    [32]

    Debelius JW, Huang T, Cai Y, et al. Subspecies Niche Specialization in the Oral Microbiome Is Associated with Nasopharyngeal Carcinoma Risk[J]. mSystems, 2020, 5(4): e00065-20. http://www.socolar.com/Article/Index?aid=200259999705&jid=200000168821

    [33]

    Ueda S, Uchiyama S, Azzi T, et al. Oropharyngeal group A streptococcal colonization disrupts latent Epstein-Barr virus infection[J]. J Infect Dis, 2014, 209(2): 255-264. doi: 10.1093/infdis/jit428

    [34]

    Panda M, Rai AK, Rahman T, et al. Alterations of salivary microbia community associated with oropharyngeal and hypopharyngeal squamous cell carcinoma patients[J]. Arch Microbiol, 2020, 202(4): 785-805. doi: 10.1007/s00203-019-01790-1

    [35]

    Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli[J]. Nature, 2020, 580(7802): 269-273. doi: 10.1038/s41586-020-2080-8

    [36]

    Barrett M, Hand CK, Shanahan F, et al. Mutagenesis by Microbe: the Role of the Microbiota in Shaping the Cancer Genome[J]. Trends Cancer, 2020, 6(4): 277-287. doi: 10.1016/j.trecan.2020.01.019

    [37]

    Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. Wnt/β-Catenin Signaling as a Molecular Target by Pathogenic Bacteria[J]. Front Immunol, 2019, 10: 2135. doi: 10.3389/fimmu.2019.02135

    [38]

    Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. doi: 10.1016/j.chom.2013.07.012

    [39]

    Kadosh E, Snir-Alkalay I, Venkatachalam A, et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic[J]. Nature, 2020, 586(7827): 133-138. doi: 10.1038/s41586-020-2541-0

    [40]

    Kumar AT, Knops A, Swendseid B, et al. Prognostic Significance of Tumor-Associated Macrophage Content in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis[J]. Front Oncol, 2019, 9: 656. doi: 10.3389/fonc.2019.00656

    [41]

    Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral Fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients[J]. Sci Rep, 2021, 11(1): 7870. doi: 10.1038/s41598-021-86816-9

    [42]

    Irfan M, Delgado R, Frias-Lopez J. The Oral Microbiome and Cancer[J]. Front Immunol, 2020, 11: 591088. doi: 10.3389/fimmu.2020.591088

    [43]

    Yang SF, Huang HD, Fan WL, et al. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer[J]. Oral Oncol, 2018, 77: 1-8. doi: 10.1016/j.oraloncology.2017.12.005

    [44]

    Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: An update[J]. J Control Release, 2020, 323: 253-268. http://www.sciencedirect.com/science/article/pii/S0168365920302455

    [45]

    Zielińska K, Karczmarek-Borowska B, Kwasniak K, et al. Salivary IL-17A, IL-17F, and TNF-α Are Associated with Disease Advancement in Patients with Oral and Oropharyngeal Cancer[J]. J Immunol Res, 2020, 2020: 3928504. http://www.xueshufan.com/publication/3048956648

    [46]

    Forster SC, Kumar N, Anonye BO, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses[J]. Nat Biotechnol, 2019, 37(2): 186-192. doi: 10.1038/s41587-018-0009-7

    [47]

    Kang DD, Li F, Kirton E, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies[J]. PeerJ, 2019, 7: e7359. doi: 10.7717/peerj.7359

    [48]

    Weinroth MD, Belk AD, Dean C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies[J]. J Anim Sci, 2022, 100(2): 346. http://pubmed.ncbi.nlm.nih.gov/35106579/

  • 加载中
计量
  • 文章访问数:  941
  • PDF下载数:  392
  • 施引文献:  0
出版历程
收稿日期:  2022-06-16
修回日期:  2022-07-06
刊出日期:  2023-06-03

目录