中-重度尘螨变应性鼻炎儿童肠道微生物特征分析

林一杭, 李俊阳, 李幼瑾. 中-重度尘螨变应性鼻炎儿童肠道微生物特征分析[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(7): 533-539. doi: 10.13201/j.issn.2096-7993.2022.07.011
引用本文: 林一杭, 李俊阳, 李幼瑾. 中-重度尘螨变应性鼻炎儿童肠道微生物特征分析[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(7): 533-539. doi: 10.13201/j.issn.2096-7993.2022.07.011
LIN Yihang, LI Junyang, LI Youjin. Metagenome-wide association of gut microbiome features in children with moderate-severe house dust mite allergic rhinitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(7): 533-539. doi: 10.13201/j.issn.2096-7993.2022.07.011
Citation: LIN Yihang, LI Junyang, LI Youjin. Metagenome-wide association of gut microbiome features in children with moderate-severe house dust mite allergic rhinitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(7): 533-539. doi: 10.13201/j.issn.2096-7993.2022.07.011

中-重度尘螨变应性鼻炎儿童肠道微生物特征分析

  • 基金项目:
    国家自然科学基金项目(No:82071015);上海市科委项目(No:21Y11900200)
详细信息

Metagenome-wide association of gut microbiome features in children with moderate-severe house dust mite allergic rhinitis

More Information
  • 目的  探讨中-重度尘螨变应性鼻炎(DAR)儿童的肠道微生物多样性和结构特征。方法 选取中-重度DAR患儿68例为DAR儿童组及相匹配的健康儿童38例为健康儿童组,收集一般资料信息,采集粪便样本行宏基因组测序。使用MetaPhlAn3生成样本的菌群组成丰度表,计算Alpha及Beta多样性变化。比较两组间不同分类水平上的物种丰度差异,LEfSe分析检验组间功能通路差异。结果 DAR儿童组肠道微生物群的物种多样性与健康儿童组比较无明显变化。相对丰度具有显著性差异的微生物群落或种属主要包括蓝绿藻菌属、普雷沃菌属、Blautia wexlerae、Prevotella copri、Eubacterium eligens、Eubacterium sp CAG 180等。中-重度DAR儿童与健康儿童肠道内的微生物功能代谢存在显著差异,DAR儿童的多种脂肪酸合成代谢增强。结论 中-重度DAR儿童的肠道微生物多样性与健康儿童相比未见明显变化,但菌群结构比例发生失衡,多种特定微生物的丰度发生显著改变,并伴有部分肠道微生物功能通路的改变。
  • 加载中
  • 图 1  肠道微生物群落Alpha多样性分析

    图 2  肠道微生物群组间差异分析

    图 3  DAR儿童组与健康儿童组主要肠道差异微生物丰度比较

    图 4  DAR儿童组与健康儿童组肠道微生物差异功能通路LEfSe分析

    表 1  健康儿童组和DAR儿童组的临床基本资料比较

    项目 健康儿童组 DAR儿童组 P
    年龄/岁 6.79±2.40 6.67±2.45 0.813
    性别/例数(%)
      男 21(55.3) 49(72.1)
      女 17(44.7) 19(27.9) 0.080
    BMI 16.8±2.5 16.9±3.9 0.942
    生产方式/例(%)
      自然分娩 17(45.9) 31(46.3)
      剖腹产 20(54.1) 36(53.7) 0.975
    喂养方式(出生6个月内)/例(%)
      单纯奶粉喂养 2(5.4) 5(7.5)
      单纯母乳喂养 27(73.0) 39(58.2)
      混合喂养 8(21.6) 23(34.3) 0.314
    变应性疾病家族史/例数(%)
      有 0(0) 37(55.2)
      无 37(100.0) 30(44.8) < 0.001
    下载: 导出CSV
  • [1]

    中国医师协会儿科医师分会儿童耳鼻咽喉专业委员会. 儿童过敏性鼻炎诊疗—临床实践指南[J]. 中国实用儿科杂志, 2019, 34(3): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSEK201903001.htm

    [2]

    Zhang Y, Zhang L. Increasing Prevalence of Allergic Rhinitis in China[J]. Allergy Asthma Immunol Res, 2019, 11(2): 156-169. doi: 10.4168/aair.2019.11.2.156

    [3]

    Sur DK, Plesa ML. Treatment of Allergic Rhinitis[J]. Am Fam Physician, 2015, 92(11): 985-992.

    [4]

    Su YJ, Luo SD, Hsu CY, et al. Differences in gut microbiota between allergic rhinitis, atopic dermatitis, and skin urticaria: A pilot study[J]. Medicine(Baltimore), 2021, 100(9): e25091.

    [5]

    Hua X, Goedert JJ, Pu A, et al. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project[J]. EBioMedicine, 2016, 3: 172-179. doi: 10.1016/j.ebiom.2015.11.038

    [6]

    Nomura A, Matsubara A, Goto S, et al. Relationship between gut microbiota composition and sensitization to inhaled allergens[J]. Allergol Int, 2020, 69(3): 437-442. doi: 10.1016/j.alit.2019.12.010

    [7]

    Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection[J]. Annu Rev Pathol, 2019, 14: 319-338. doi: 10.1146/annurev-pathmechdis-012418-012751

    [8]

    Lepage P, Leclerc MC, Joossens M, et al. A metagenomic insight into our gut's microbiome[J]. Gut, 2013, 62(1): 146-158. doi: 10.1136/gutjnl-2011-301805

    [9]

    中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组、小儿学组, 中华儿科杂志编辑委员会. 儿童变应性鼻炎诊断和治疗指南(2010年, 重庆)[J]. 中华耳鼻咽喉头颈外科杂志, 2011, 46(1): 7-8. https://cdmd.cnki.com.cn/Article/CDMD-10611-1014044856.htm

    [10]

    Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma(ARIA)guidelines-2016 revision[J]. J Allergy Clin Immunol, 2017, 140(4): 950-958. doi: 10.1016/j.jaci.2017.03.050

    [11]

    Li Y, Lin Y, Jiang Y, et al. GWAS-identified variants to allergic disease and early environmental exposure in Chinese schoolchildren with allergic rhinitis induced by house dust mite[J]. Asian Pac J Allergy Immunol, 2022, 40(1): 55-64.

    [12]

    Cukrowska B, Bierła JB, Zakrzewska M, et al. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life[J]. Nutrients, 2020, 12(4): 946. doi: 10.3390/nu12040946

    [13]

    Melli LC, do Carmo-Rodrigues MS, Araújo-Filho HB, et al. Intestinal microbiota and allergic diseases: A systematic review[J]. Allergol Immunopathol(Madr), 2016, 44(2): 177-188. doi: 10.1016/j.aller.2015.01.013

    [14]

    Zhou MS, Zhang B, Gao ZL, et al. Altered diversity and composition of gut microbiota in patients with allergic rhinitis[J]. Microb Pathog, 2021, 161(Pt A): 105272.

    [15]

    Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age[J]. Clin Exp Allergy, 2014, 44(6): 842-850. doi: 10.1111/cea.12253

    [16]

    Chiu CY, Chan YL, Tsai MH, et al. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies[J]. World Allergy Organ J, 2019, 12(3): 100021. doi: 10.1016/j.waojou.2019.100021

    [17]

    Goldberg MR, Mor H, Magid Neriya D, et al. Microbial signature in IgE-mediated food allergies[J]. Genome Med, 2020, 12(1): 92. doi: 10.1186/s13073-020-00789-4

    [18]

    Franke T, Deppenmeier U. Physiology and central carbon metabolism of the gut bacterium Prevotella copri[J]. Mol Microbiol, 2018, 109(4): 528-540. doi: 10.1111/mmi.14058

    [19]

    Simonyté Sjödin K, Hammarström ML, Rydén P, et al. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age[J]. Allergy, 2019, 74(1): 176-185. doi: 10.1111/all.13485

    [20]

    Vuillermin PJ, O'Hely M, Collier F, et al. Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring[J]. Nat Commun, 2020, 11(1): 1452. doi: 10.1038/s41467-020-14552-1

    [21]

    Zhu L, Xu F, Wan W, et al. Correction to: Gut microbial characteristics of adult patients with allergy rhinitis[J]. Microb Cell Fact, 2020, 19(1): 192. doi: 10.1186/s12934-020-01441-x

    [22]

    Liu X, Mao B, Gu J, et al. Blautia-a new functional genus with potential probiotic properties?[J]. Gut Microbes, 2021, 13(1): 1-21.

    [23]

    Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation[J]. Immune Netw, 2014, 14(6): 277-288. doi: 10.4110/in.2014.14.6.277

    [24]

    Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis[J]. Nat Commun, 2018, 9(1): 3555. doi: 10.1038/s41467-018-05901-2

    [25]

    Berni Canani R, Sangwan N, Stefka AT, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants[J]. ISME J, 2016, 10(3): 742-750. doi: 10.1038/ismej.2015.151

    [26]

    Trischler R, Roth J, Sorbara MT, et al. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond[J]. Environ Microbiol, 2022.

    [27]

    夏金金, 汪涛. 自身免疫性疾病发病机制新进展[J]. 国际免疫学杂志, 2016, 39(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYI201812086.htm

    [28]

    Kaminuma O, Nishimura T, Saeki M, et al. T Cell-Mediated Nasal Hyperresponsiveness in Allergic Rhinitis[J]. Biol Pharm Bull, 2020, 43(1): 36-40. doi: 10.1248/bpb.b18-01021

    [29]

    Shimizu Y, Nakamura K, Kikuchi M, et al. Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO Health Study[J]. Geroscience, 2022, 44(2): 997-1009. doi: 10.1007/s11357-021-00398-y

    [30]

    Zhu J, Liao M, Yao Z, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome[J]. Microbiome, 2018, 6(1): 136. doi: 10.1186/s40168-018-0515-3

    [31]

    Ye Z, Wu C, Zhang N, et al. Altered gut microbiome composition in patients with Vogt-Koyanagi-Harada disease[J]. Gut Microbes, 2020, 11(3): 539-555. doi: 10.1080/19490976.2019.1700754

    [32]

    Gloux K, Anba-Mondoloni J. Unique β-Glucuronidase Locus in Gut Microbiomes of Crohn's Disease Patients and Unaffected First-Degree Relatives[J]. PLoS One, 2016, 11(1): e0148291. doi: 10.1371/journal.pone.0148291

    [33]

    Mukherjee A, Lordan C, Ross RP, et al. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health[J]. Gut Microbes, 2020, 12(1): 1802866. doi: 10.1080/19490976.2020.1802866

    [34]

    Wopereis H, Sim K, Shaw A, et al. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development[J]. J Allergy Clin Immunol, 2018, 141(4): 1334-1342. e5. doi: 10.1016/j.jaci.2017.05.054

    [35]

    Meijer K, De VP, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health?[J]. Brain Behav Immun Health, 2021, 16: 100318. doi: 10.1016/j.bbih.2021.100318

    [36]

    Tordesillas L, Gómez-Casado C, Garrido-Arandia M, et al. Transport of Pru p 3 across gastrointestinal epithelium-an essential step towards the induction of food allergy?[J]. Clin Exp Allergy, 2013, 43(12): 1374-1383. doi: 10.1111/cea.12202

    [37]

    Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation[J]. Nat Rev Immunol, 2015, 15(8): 511-523. doi: 10.1038/nri3859

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1286
  • PDF下载数:  400
  • 施引文献:  0
出版历程
收稿日期:  2022-04-04
刊出日期:  2022-07-03

目录