Analysis of related factors in secondary erythrocytosis of obstructive sleep apnea hypopnea syndrome in Gansu province
-
摘要: 目的 分析甘肃地区阻塞性睡眠呼吸暂停(OSA)继发红细胞增多症的相关因素。方法 收集2013年1月—2021年1月长居甘肃的汉族OSA患者448例,按照血红蛋白(Hb)值分为A、B、C、D、E组,分别为正常(Hb 120~160 g/L)41例、轻度增高(Hb 161~179 g/L)142例、中度增高(Hb 180~199 g/L)156例、重度增高(Hb 200~219 g/L)79例、极重度增高(Hb≥220 g/L)30例。对所有患者进行PSG监测,比较三组的一般临床资料、居住地海拔高度、病程、呼吸暂停低通气指数(AHI)、最低血氧饱和度(LSpO2)、平均血氧饱和度(MSpO2),并用多因素回归及ROC曲线分析OSA继发红细胞增多症的影响因素。结果 A、B、C、D、E组间年龄、性别及病程的差异无统计学意义(P>0.05)。E组海拔高度高于A、B、C、D组(P < 0.05),A、B、C、D组之间海拔高度的差异无统计学意义(P>0.05);各组间的AHI差异有统计学意义(P < 0.05),其中C、D、E组显著高于A组,D组显著高于B、C组;各组间的LSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组;各组间的MSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组。多因素回归显示:海拔越高、MSpO2越低,引起继发髙血红蛋白血症的程度越严重;年龄、病程、AHI及LSpO2均不是OSA继发血红蛋白增多的影响因素。MSpO2、海拔高度预测Hb≥180 g/L的ROC曲线下面积分别为0.694(P < 0.001)、0.570(P=0.009),差异有统计学意义(Z=3.205,P=0.001)。结论 海拔高度、MSpO2是引起OSA继发红细胞增多症的独立危险因素;MSpO2预测OSA患者Hb≥180 g/L优于海拔高度。
-
关键词:
- 睡眠呼吸暂停,阻塞性 /
- 继发红细胞增多症 /
- 平均血氧饱和度 /
- 海拔高度
Abstract: Objective To analyze the related factors of secondary erythrocytosis of obstructive sleep apnea(OSA) in Gansu province.Methods Polysomnography recording and analysis from January 2013 to January 2021, A total of 448 OSA patients of long-resident Han nationality in Gansu province. Hemoglobin(Hb) values were divided into group A(Hb 120-160 g/L) 41 cases, B(Hb 161-179 g/L) 142 cases, C(Hb 180-199 g/L) 152 cases, D(Hb 200-219 g/L) 79 cases, and E(Hb ≥220 g/L) 30 cases. General clinical data, altitude of residence, disease course, apnea hypopnea index (AHI), and Lowest oxyhemoglobin(LSpO2) were compared among these groups. Multivariate regression and ROC curves were used to analyze the influencing factors of OSA secondary erythrocytosis.Results There were no significant differences in age, sex, and course of disease among groups A, B, C, D, and E (P>0.05).The altitude of group E was higher than that of groups A, B, C, and D (P < 0.05), but there was no significant difference between groups A, B, C and D (P>0.05).AHI was significantly different among groups A, B, C, D, and E (P < 0.05), groups C, D, and E were significantly higher than A; group D was significantly higher than B, C.LSpO2 was significantly different among groups A, B, C, D, and E (P < 0.05), groups B, C, D, and E was significantly lower than A; group D, E was significantly lower than B, C.MSpO2was significantly different among groups A, B, C, D, and E (P < 0.05), groups B, C, D, and E was significantly lower A; groups D, E was significantly lower than B, C.Multivariate regression showed that the higher the altitude, the lower the MSpO2, the more serious the secondary hyperhemoglobinemia.Age, course of the disease, AHI, and LSpO2 were not the influencing factors of OSA secondary hemoglobin increase.The areas under the ROC curve for MSpO2 and altitude to predict Hb≥180 g/L were 0.694(P < 0.001) and 0.570(P=0.009), with statistically significant differences(Z=3.205, P=0.001).Conclusion Altitude and MSpO2were independent risk factors for OSA secondary erythrocytosis; MSpO2predicted that Hb≥180 g/L in OSA patients was better than altitude.-
Key words:
- sleep apnea, obstructive /
- secondary erythrocytosis /
- MSpO2 /
- altitude
-
表 1 各组一般资料比较
项目 A组(n=41) B组(n=142) C组(n=156) D组(n=79) E组(n=30) 年龄/岁 46.073±8.624 45.873±10.606 48.865±12.660 46.620±12.253 51.200±12.246 性别 男/例 39 138 148 76 29 女/例 2 4 8 3 1 病程/年 9.270±8.285 9.150±7.271 10.900±8.976 10.410±8.259 10.630±9.261 Hb/(g·L-1) 148.707±9.634 172.338±4.3551) 187.955±5.8481)2) 207.937±5.3651)2)3) 231.800±9.8131)2)3)4) 与A组比较,1)P < 0.05;与B组比较,2)P < 0.05;与C比较,3)P < 0.05;与D组比较,4)P < 0.05。 表 2 各组居住地海拔高度及PSG结果比较
项目 A组(n=41) B组(n=142) C组(n=156) D组(n=79) E组(n=30) 海拔/m 1 962.207±413.8051) 1 911.394±364.6851) 1 990.814±386.3081) 1 996.177±401.0561) 2 250.367±470.273 AHI/(次·h-1) 42.251±26.310 49.950±22.4173) 51.470±23.4522)3) 58.561±22.2792) 56.330±24.0042) LSpO2/% 72.781±13.378 64.597±18.1381)2)3) 62.420±18.9731)2)3) 52.304±17.9912) 53.133±17.7702) MSpO2/% 91.234±5.812 88.145±6.3611)2)3) 85.825±8.6341)2)3) 80.266±10.4872) 80.767±7.9822) 与E组比较,1)P < 0.05;与A组比较,2)P < 0.05;与D组比较,3)P < 0.05。 表 3 OSA继发红细胞增多症相关因素回归分析
因素 系数 Wald值 95%CI P值 下限 上限 年龄 0.012 2.257 -0.003 -0.027 0.112 病程 0.008 0.517 -0.030 0.014 0.472 海拔 0.001 17.417 0.000 0.001 < 0.001 AHI 0.003 0.514 -0.005 0.011 0.473 LSpO2 -0.003 0.190 -0.017 0.011 0.663 MSpO2 -0.080 27.184 -0.110 -0.050 < 0.001 -
[1] 张香侠, 厉雪艳, 陈贵海, 等. REM相关阻塞性睡眠呼吸暂停的临床研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(2): 145-148. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202202016.htm
[2] Keohane C, McMullin MF, Harrison C. The diagnosis and management of erythrocytosis[J]. BMJ, 2013, 347: f6667. doi: 10.1136/bmj.f6667
[3] McMullin MF, Harrison CN, Ali S, et al. A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology Guideline[J]. Br J Haematol, 2019, 184(2): 176-191. doi: 10.1111/bjh.15648
[4] Gordeuk VR, Key NS, Prchal JT. Re-evaluation of hematocrit as a determinant of thrombotic risk in erythrocytosis[J]. Haematologica, 2019, 104(4): 653-658. doi: 10.3324/haematol.2018.210732
[5] McMullin MF. Investigation and Management of Erythrocytosis[J]. Curr Hematol Malig Rep, 2016, 11(5): 342-347. doi: 10.1007/s11899-016-0334-1
[6] Mithoowani S, Laureano M, Crowther MA, et al. Investigation and management of erythrocytosis[J]. CMAJ, 2020, 192(32): E913-E918. doi: 10.1503/cmaj.191587
[7] Hashimoto Y, Tanaka M, Kimura T, et al. Hemoglobin concentration and incident metabolic syndrome: a population-based large-scale cohort study[J]. Endocrine, 2015, 50(2): 390-396. doi: 10.1007/s12020-015-0587-9
[8] Kunnas T, Solakivi T, Huuskonen K, et al. Hematocrit and the risk of coronary heart disease mortality in the TAMRISK study, a 28-year follow-up[J]. Prev Med, 2009, 49(1): 45-47. doi: 10.1016/j.ypmed.2009.04.015
[9] 陈东梅, 蒋雪龙, 张庆龙, 等. OSAHS患者合并髙血红蛋白症的临床分析[J]. 新疆医学, 2020, 50(11): 1147-1149.
[10] Song J, Sundar K, Gangaraju R, et al. Regulation of erythropoiesis after normoxic return from chronic sustained and intermittent hypoxia[J]. J Appl Physiol(1985), 2017, 123(6): 1671-1675. doi: 10.1152/japplphysiol.00119.2017
[11] Ishii M, Iwamoto T, Nagai A, et al. Polycythemia and changes in erythropoietin concentration in rats exposed to intermittent hypoxia[J]. Adv Exp Med Biol, 2010, 662: 121-126.
[12] Alvarez-Martins I, Remédio L, Matias I, et, al. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment[J]. Pflugers Arch, 2016, 468(5): 919-932. doi: 10.1007/s00424-016-1797-6
[13] Kang J, Li Y, Hu K, et al. Chronic intermittent hypoxia versus continuous hypoxia: Same effects on hemorheology?[J]. Clin Hemorheol Microcirc, 2016, 63(3): 245-255. doi: 10.3233/CH-151973
[14] Solmaz S, Duksal F, Ganidaǧlı S. Is obstructive sleep apnoea syndrome really one of the causes of secondary polycythaemia?[J]. Hematology, 2015, 20(2): 108-111. doi: 10.1179/1607845414Y.0000000170
[15] Nguyen CD, Holty JC. Does untreated obstructive sleep apnea cause secondary erythrocytosis?[J]. Respir Med, 2017, 130: 27-34. doi: 10.1016/j.rmed.2017.07.003
[16] Li N, Li HP, Wang P, et al. Nocturnal Mean Oxygen Saturation Is Associated with Secondary Polycythemia in Young Adults with Obstructive Sleep Apnea, Especially in Men[J]. Nat Sci Sleep, 2019, 11: 377-386. doi: 10.2147/NSS.S226143
[17] Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology[J]. Mol Biol Evol, 2021, 38(7): 2677-2691. doi: 10.1093/molbev/msab064
[18] Hoshikawa M, Uchida S, Sugo T, et al. Changes in sleep quality of athletes under normobaric hypoxia equivalent to 2, 000-m altitude: a polysomnographic study[J]. J Appl Physiol(1985), 2007, 103(6): 2005-2011. doi: 10.1152/japplphysiol.00315.2007
[19] Bloch KE, Latshang TD, Ulrich S. Patients with Obstructive Sleep Apnea at Altitude[J]. High Alt Med Biol, 2015, 16(2): 110-116. doi: 10.1089/ham.2015.0016
[20] Latshang TD, Bloch KE. How to treat patients with obstructive sleep apnea syndrome during an altitude sojourn[J]. High Alt Med Biol, 2011, 12(4): 303-307. doi: 10.1089/ham.2011.1055
[21] Solmaz S, Duksal F, Ganidaǧlı S. Is obstructive sleep apnoea syndrome really one of the causes of secondary polycythaemia?[J]. Hematology, 2015, 20(2): 108-111. doi: 10.1179/1607845414Y.0000000170
[22] Wimms A, Woehrle H, Ketheeswaran S, et al. Obstructive Sleep Apnea in Women: Specific Issues and Interventions[J]. Biomed Res Int, 2016, 2016: 1764837.
[23] Grau M, Cremer JM, Schmeichel S, et al. Comparisons of Blood Parameters, Red Blood Cell Deformability and Circulating Nitric Oxide Between Males and Females Considering Hormonal Contraception: A Longitudinal Gender Study[J]. Front Physiol, 2018, 9: 1835. doi: 10.3389/fphys.2018.01835
[24] Alvarez-Martins I, Remédio L, Matias I, et al. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment[J]. Pflugers Arch, 2016, 468(5): 919-932. doi: 10.1007/s00424-016-1797-6
[25] O'Halloran KD, Lewis P, McDonald F. Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females[J]. Respir Physiol Neurobiol, 2017, 245: 76-82. doi: 10.1016/j.resp.2016.11.009
[26] Soliz J, Thomsen JJ, Soulage C, et al. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296(6): R1837-1846. doi: 10.1152/ajpregu.90967.2008
[27] Deng L, Zhang C, Yuan K, et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders[J]. Natl Sci Rev, 2019, 6(6): 1201-1222. doi: 10.1093/nsr/nwz108