甘肃地区OSA继发红细胞增多症的相关因素分析

王金凤, 方金瑞, 谢宇平, 等. 甘肃地区OSA继发红细胞增多症的相关因素分析[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(5): 338-342. doi: 10.13201/j.issn.2096-7993.2022.05.003
引用本文: 王金凤, 方金瑞, 谢宇平, 等. 甘肃地区OSA继发红细胞增多症的相关因素分析[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(5): 338-342. doi: 10.13201/j.issn.2096-7993.2022.05.003
WANG Jinfeng, FANG Jinrui, XIE Yuping, et al. Analysis of related factors in secondary erythrocytosis of obstructive sleep apnea hypopnea syndrome in Gansu province[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(5): 338-342. doi: 10.13201/j.issn.2096-7993.2022.05.003
Citation: WANG Jinfeng, FANG Jinrui, XIE Yuping, et al. Analysis of related factors in secondary erythrocytosis of obstructive sleep apnea hypopnea syndrome in Gansu province[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(5): 338-342. doi: 10.13201/j.issn.2096-7993.2022.05.003

甘肃地区OSA继发红细胞增多症的相关因素分析

  • 基金项目:
    国家自然科学基金(No:81560228,61962034);2019年甘肃省卫生行业科研计划项目(No:GSWSKY-2019-88);甘肃省科技计划项目(No:20JR10RA437);甘肃省人民医院院内基金项目(No:18GSSY4-19,21GSSYC-25)
详细信息

Analysis of related factors in secondary erythrocytosis of obstructive sleep apnea hypopnea syndrome in Gansu province

More Information
  • 目的 分析甘肃地区阻塞性睡眠呼吸暂停(OSA)继发红细胞增多症的相关因素。方法 收集2013年1月—2021年1月长居甘肃的汉族OSA患者448例,按照血红蛋白(Hb)值分为A、B、C、D、E组,分别为正常(Hb 120~160 g/L)41例、轻度增高(Hb 161~179 g/L)142例、中度增高(Hb 180~199 g/L)156例、重度增高(Hb 200~219 g/L)79例、极重度增高(Hb≥220 g/L)30例。对所有患者进行PSG监测,比较三组的一般临床资料、居住地海拔高度、病程、呼吸暂停低通气指数(AHI)、最低血氧饱和度(LSpO2)、平均血氧饱和度(MSpO2),并用多因素回归及ROC曲线分析OSA继发红细胞增多症的影响因素。结果 A、B、C、D、E组间年龄、性别及病程的差异无统计学意义(P>0.05)。E组海拔高度高于A、B、C、D组(P < 0.05),A、B、C、D组之间海拔高度的差异无统计学意义(P>0.05);各组间的AHI差异有统计学意义(P < 0.05),其中C、D、E组显著高于A组,D组显著高于B、C组;各组间的LSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组;各组间的MSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组。多因素回归显示:海拔越高、MSpO2越低,引起继发髙血红蛋白血症的程度越严重;年龄、病程、AHI及LSpO2均不是OSA继发血红蛋白增多的影响因素。MSpO2、海拔高度预测Hb≥180 g/L的ROC曲线下面积分别为0.694(P < 0.001)、0.570(P=0.009),差异有统计学意义(Z=3.205,P=0.001)。结论 海拔高度、MSpO2是引起OSA继发红细胞增多症的独立危险因素;MSpO2预测OSA患者Hb≥180 g/L优于海拔高度。
  • 加载中
  • 图 1  海拔高度、MSpO2预测OSA患者Hb≥180 g/L的ROC曲线

    表 1  各组一般资料比较

    项目 A组(n=41) B组(n=142) C组(n=156) D组(n=79) E组(n=30)
    年龄/岁 46.073±8.624 45.873±10.606 48.865±12.660 46.620±12.253 51.200±12.246
    性别
      男/例 39 138 148 76 29
      女/例 2 4 8 3 1
    病程/年 9.270±8.285 9.150±7.271 10.900±8.976 10.410±8.259 10.630±9.261
    Hb/(g·L-1) 148.707±9.634 172.338±4.3551) 187.955±5.8481)2) 207.937±5.3651)2)3) 231.800±9.8131)2)3)4)
    与A组比较,1)P < 0.05;与B组比较,2)P < 0.05;与C比较,3)P < 0.05;与D组比较,4)P < 0.05。
    下载: 导出CSV

    表 2  各组居住地海拔高度及PSG结果比较

    项目 A组(n=41) B组(n=142) C组(n=156) D组(n=79) E组(n=30)
    海拔/m 1 962.207±413.8051) 1 911.394±364.6851) 1 990.814±386.3081) 1 996.177±401.0561) 2 250.367±470.273
    AHI/(次·h-1) 42.251±26.310 49.950±22.4173) 51.470±23.4522)3) 58.561±22.2792) 56.330±24.0042)
    LSpO2/% 72.781±13.378 64.597±18.1381)2)3) 62.420±18.9731)2)3) 52.304±17.9912) 53.133±17.7702)
    MSpO2/% 91.234±5.812 88.145±6.3611)2)3) 85.825±8.6341)2)3) 80.266±10.4872) 80.767±7.9822)
    与E组比较,1)P < 0.05;与A组比较,2)P < 0.05;与D组比较,3)P < 0.05。
    下载: 导出CSV

    表 3  OSA继发红细胞增多症相关因素回归分析

    因素 系数 Wald值 95%CI P
    下限 上限
    年龄 0.012 2.257 -0.003 -0.027 0.112
    病程 0.008 0.517 -0.030 0.014 0.472
    海拔 0.001 17.417 0.000 0.001 < 0.001
    AHI 0.003 0.514 -0.005 0.011 0.473
    LSpO2 -0.003 0.190 -0.017 0.011 0.663
    MSpO2 -0.080 27.184 -0.110 -0.050 < 0.001
    下载: 导出CSV
  • [1]

    张香侠, 厉雪艳, 陈贵海, 等. REM相关阻塞性睡眠呼吸暂停的临床研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(2): 145-148. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202202016.htm

    [2]

    Keohane C, McMullin MF, Harrison C. The diagnosis and management of erythrocytosis[J]. BMJ, 2013, 347: f6667. doi: 10.1136/bmj.f6667

    [3]

    McMullin MF, Harrison CN, Ali S, et al. A guideline for the diagnosis and management of polycythaemia vera. A British Society for Haematology Guideline[J]. Br J Haematol, 2019, 184(2): 176-191. doi: 10.1111/bjh.15648

    [4]

    Gordeuk VR, Key NS, Prchal JT. Re-evaluation of hematocrit as a determinant of thrombotic risk in erythrocytosis[J]. Haematologica, 2019, 104(4): 653-658. doi: 10.3324/haematol.2018.210732

    [5]

    McMullin MF. Investigation and Management of Erythrocytosis[J]. Curr Hematol Malig Rep, 2016, 11(5): 342-347. doi: 10.1007/s11899-016-0334-1

    [6]

    Mithoowani S, Laureano M, Crowther MA, et al. Investigation and management of erythrocytosis[J]. CMAJ, 2020, 192(32): E913-E918. doi: 10.1503/cmaj.191587

    [7]

    Hashimoto Y, Tanaka M, Kimura T, et al. Hemoglobin concentration and incident metabolic syndrome: a population-based large-scale cohort study[J]. Endocrine, 2015, 50(2): 390-396. doi: 10.1007/s12020-015-0587-9

    [8]

    Kunnas T, Solakivi T, Huuskonen K, et al. Hematocrit and the risk of coronary heart disease mortality in the TAMRISK study, a 28-year follow-up[J]. Prev Med, 2009, 49(1): 45-47. doi: 10.1016/j.ypmed.2009.04.015

    [9]

    陈东梅, 蒋雪龙, 张庆龙, 等. OSAHS患者合并髙血红蛋白症的临床分析[J]. 新疆医学, 2020, 50(11): 1147-1149.

    [10]

    Song J, Sundar K, Gangaraju R, et al. Regulation of erythropoiesis after normoxic return from chronic sustained and intermittent hypoxia[J]. J Appl Physiol(1985), 2017, 123(6): 1671-1675. doi: 10.1152/japplphysiol.00119.2017

    [11]

    Ishii M, Iwamoto T, Nagai A, et al. Polycythemia and changes in erythropoietin concentration in rats exposed to intermittent hypoxia[J]. Adv Exp Med Biol, 2010, 662: 121-126.

    [12]

    Alvarez-Martins I, Remédio L, Matias I, et, al. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment[J]. Pflugers Arch, 2016, 468(5): 919-932. doi: 10.1007/s00424-016-1797-6

    [13]

    Kang J, Li Y, Hu K, et al. Chronic intermittent hypoxia versus continuous hypoxia: Same effects on hemorheology?[J]. Clin Hemorheol Microcirc, 2016, 63(3): 245-255. doi: 10.3233/CH-151973

    [14]

    Solmaz S, Duksal F, Ganidaǧlı S. Is obstructive sleep apnoea syndrome really one of the causes of secondary polycythaemia?[J]. Hematology, 2015, 20(2): 108-111. doi: 10.1179/1607845414Y.0000000170

    [15]

    Nguyen CD, Holty JC. Does untreated obstructive sleep apnea cause secondary erythrocytosis?[J]. Respir Med, 2017, 130: 27-34. doi: 10.1016/j.rmed.2017.07.003

    [16]

    Li N, Li HP, Wang P, et al. Nocturnal Mean Oxygen Saturation Is Associated with Secondary Polycythemia in Young Adults with Obstructive Sleep Apnea, Especially in Men[J]. Nat Sci Sleep, 2019, 11: 377-386. doi: 10.2147/NSS.S226143

    [17]

    Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology[J]. Mol Biol Evol, 2021, 38(7): 2677-2691. doi: 10.1093/molbev/msab064

    [18]

    Hoshikawa M, Uchida S, Sugo T, et al. Changes in sleep quality of athletes under normobaric hypoxia equivalent to 2, 000-m altitude: a polysomnographic study[J]. J Appl Physiol(1985), 2007, 103(6): 2005-2011. doi: 10.1152/japplphysiol.00315.2007

    [19]

    Bloch KE, Latshang TD, Ulrich S. Patients with Obstructive Sleep Apnea at Altitude[J]. High Alt Med Biol, 2015, 16(2): 110-116. doi: 10.1089/ham.2015.0016

    [20]

    Latshang TD, Bloch KE. How to treat patients with obstructive sleep apnea syndrome during an altitude sojourn[J]. High Alt Med Biol, 2011, 12(4): 303-307. doi: 10.1089/ham.2011.1055

    [21]

    Solmaz S, Duksal F, Ganidaǧlı S. Is obstructive sleep apnoea syndrome really one of the causes of secondary polycythaemia?[J]. Hematology, 2015, 20(2): 108-111. doi: 10.1179/1607845414Y.0000000170

    [22]

    Wimms A, Woehrle H, Ketheeswaran S, et al. Obstructive Sleep Apnea in Women: Specific Issues and Interventions[J]. Biomed Res Int, 2016, 2016: 1764837.

    [23]

    Grau M, Cremer JM, Schmeichel S, et al. Comparisons of Blood Parameters, Red Blood Cell Deformability and Circulating Nitric Oxide Between Males and Females Considering Hormonal Contraception: A Longitudinal Gender Study[J]. Front Physiol, 2018, 9: 1835. doi: 10.3389/fphys.2018.01835

    [24]

    Alvarez-Martins I, Remédio L, Matias I, et al. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment[J]. Pflugers Arch, 2016, 468(5): 919-932. doi: 10.1007/s00424-016-1797-6

    [25]

    O'Halloran KD, Lewis P, McDonald F. Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females[J]. Respir Physiol Neurobiol, 2017, 245: 76-82. doi: 10.1016/j.resp.2016.11.009

    [26]

    Soliz J, Thomsen JJ, Soulage C, et al. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296(6): R1837-1846. doi: 10.1152/ajpregu.90967.2008

    [27]

    Deng L, Zhang C, Yuan K, et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders[J]. Natl Sci Rev, 2019, 6(6): 1201-1222. doi: 10.1093/nsr/nwz108

  • 加载中

(1)

(3)

计量
  • 文章访问数:  1402
  • PDF下载数:  254
  • 施引文献:  0
出版历程
收稿日期:  2022-01-05
修回日期:  2022-02-18
刊出日期:  2022-05-03

目录