-
Abstract: Tinnitus is one of the most common clinical symptoms of otology, and its pathogenesis is still unclear. The mechanism of tinnitus has been studied through a cognitive progress from the periphery (cochlea) to auditory center to the limbic system. Auditory peripheral lesions, such as damages to ribbon synapses, may form excitatory deafferentation, then it induces the auditory center to start the compensatory gain, leading to an increase in excitatory response; If the damage is further aggravated, it may cause continuous enhancement of central gain effect, hyperexcitability may occur and leading to tinnitus. Besides, the limbic system may be involved in the maintenance or exacerbation of tinnitus symptoms. This paper reviews the recent researches on tinnitus mechanism and auditory center plasticity.
-
Key words:
- tinnitus /
- auditory center /
- hyperexcitability /
- ribbon synapse /
- neural plasticity
-
[1] Piccirillo JF, Rodebaugh TL, Lenze EJ. Tinnitus[J]. JAMA, 2020.
[2] 贾若, 刘博, 成雷, 等. 耳鸣患者睡眠质量的临床分析[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(10): 961-965. doi: 10.13201/j.issn.1001-1781.2019.10.015
[3] Vona B, Nanda I, Shehata-Dieler W, et al. Genetics of Tinnitus: Still in its Infancy[J]. Front Neurosci, 2017, 11: 236. doi: 10.3389/fnins.2017.00236
[4] Baguley D, McFerran D, Hall D. Tinnitus[J]. Lancet, 2013, 382(9904): 1600-7. doi: 10.1016/S0140-6736(13)60142-7
[5] Sheppard A, Stocking C, Ralli M, et al. A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis[J]. Int J Audiol, 2020, 59(1): 5-15. doi: 10.1080/14992027.2019.1660812
[6] Sedley W. Tinnitus: Does Gain Explain?[J]. Neuroscience, 2019, 407: 213-228. doi: 10.1016/j.neuroscience.2019.01.027
[7] Jackson P. A comparison of the effects of eighth nerve section with lidocaine on tinnitus[J]. J Laryngol Otol, 1985, 99(7): 663-666. doi: 10.1017/S0022215100097449
[8] Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms[J]. Hear Res, 2017, 349: 138-147. doi: 10.1016/j.heares.2017.01.003
[9] Strumila R, Lengvenyt A, Vainutien V, et al. The role of questioning environment, personality traits, depressive and anxiety symptoms in tinnitus severity perception[J]. Psychiatr Q, 2017, 88(4): 865-877. doi: 10.1007/s11126-017-9502-2
[10] Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate(NMDA)receptors may participate in a stress-mediated Type-Ⅰ auditory neural exacerbation of tinnitus[J]. Brain Res, 2013, 1499: 80-108. doi: 10.1016/j.brainres.2013.01.006
[11] Kobel M, Le Prell CG, Liu J, et al. Noise-induced cochlear synaptopathy: Past findings and future studies[J]. Hear Res, 2017, 349: 148-154. doi: 10.1016/j.heares.2016.12.008
[12] Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res, 2015, 330(Pt B): 191-199.
[13] Liu K, Jiang X, Shi C, et al. Cochlear inner hair cell ribbon synapse is the primary target of ototoxic aminoglycoside stimuli[J]. Mol Neurobiol, 2013, 48(3): 647-654. doi: 10.1007/s12035-013-8454-2
[14] Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea[J]. Physiol Rev, 2020, 100(1): 103-144. doi: 10.1152/physrev.00026.2018
[15] 柳柯, 龚树生. 隐匿性听力损失和耳蜗带状突触病变—对听觉损害与保护的新考量[J]. 中华耳科学杂志, 2019, 17(2): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHER201902004.htm
[16] Zhang W, Peng Z, Yu S, et al. Loss of Cochlear Ribbon Synapse Is a Critical Contributor to Chronic Salicylate Sodium Treatment-Induced Tinnitus without Change Hearing Threshold[J]. Neural Plast, 2020, 2020: 3949161.
[17] Singer W, Zuccotti A, Jaumann M, et al. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus[J]. Mol Neurobiol, 2013, 47(1): 261-279. doi: 10.1007/s12035-012-8372-8
[18] Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?[J]. J Neurophysiol, 2014, 111(3): 552-564. doi: 10.1152/jn.00184.2013
[19] Kaltenbach JA, Afman CE. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus[J]. Hear Res, 2000, 140(1-2): 165-172. doi: 10.1016/S0378-5955(99)00197-5
[20] Salvi RJ, Saunders SS, Gratton MA, et al. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma[J]. Hear Res, 1990, 50(1-2): 245-257. doi: 10.1016/0378-5955(90)90049-U
[21] Bilak M, Kim J, Potashner SJ, et al. New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma[J]. Exp Neurol, 1997, 147(2): 256-268. doi: 10.1006/exnr.1997.6636
[22] Mulders WH, Robertson D. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity[J]. Neuroscience, 2009, 164(2): 733-746. doi: 10.1016/j.neuroscience.2009.08.036
[23] Mulders WH, Robertson D. Progressive centralization of midbrain hyperactivity after acoustic trauma[J]. Neuroscience, 2011, 192: 753-760. doi: 10.1016/j.neuroscience.2011.06.046
[24] Knipper M, van Dijk P, Schulze H, et al. The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants[J]. J Neurosci, 2020, 40(38): 7190-7202. doi: 10.1523/JNEUROSCI.1314-19.2020
[25] Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis[J]. Front Neurol, 2014, 5: 206.
[26] Ngodup T, Goetz JA, McGuire BC, et al. Activity-dependent, homeostatic regulation of neurotransmitter release from auditory nerve fibers[J]. Proc Natl Acad Sci U S A, 2015, 112(20): 6479-6484. doi: 10.1073/pnas.1420885112
[27] Zheng Y, Dixon S, McPherson K, et al. Glutamic acid decarboxylase levels in the cochlear nucleus of rats with acoustic trauma-induced chronic tinnitus[J]. Neurosci Lett, 2015, 586: 60-64. doi: 10.1016/j.neulet.2014.11.047
[28] Ueyama T, Donishi T, Ukai S, et al. Alterations of Regional Cerebral Blood Flow in Tinnitus Patients as Assessed Using Single-Photon Emission Computed Tomography[J]. PLoS One, 2015, 10(9): e0137291. doi: 10.1371/journal.pone.0137291
[29] Job A, Jaroszynski C, Kavounoudias A, et al. Functional Connectivity in Chronic Nonbothersome Tinnitus Following Acoustic Trauma: A Seed-Based Resting-State Functional Magnetic Resonance Imaging Study[J]. Brain Connect, 2020, 10(6): 279-291. doi: 10.1089/brain.2019.0712
[30] Niu Y, Kumaraguru A, Wang R, et al. Hyperexcitability of inferior colliculus neurons caused by acute noise exposure[J]. J Neurosci Res, 2013, 91(2): 292-299. doi: 10.1002/jnr.23152
[31] 李刚, 李明, 张剑宁. 个性化音乐治疗耳鸣的机制及研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(1): 91-95. doi: 10.13201/j.issn.2096-7993.2021.01.024
[32] Hayes SH, Schormans AL, Sigel G, et al. Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation[J]. Prog Neurobiol, 2021, 196: 101893. doi: 10.1016/j.pneurobio.2020.101893
[33] Sedley W, Alter K, Gander PE, et al. Exposing Pathological Sensory Predictions in Tinnitus Using Auditory Intensity Deviant Evoked Responses[J]. J Neurosci, 2019, 39(50): 10096-10103. doi: 10.1523/JNEUROSCI.1308-19.2019
[34] Leaver AM, Seydell-Greenwald A, Rauschecker JP. Auditory-limbic interactions in chronic tinnitus: Challenges for neuroimaging research[J]. Hear Res, 2016, 334: 49-57. doi: 10.1016/j.heares.2015.08.005
[35] Qu T, Qi Y, Yu S, et al. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram[J]. Neuroscience, 2019, 408: 31-45. doi: 10.1016/j.neuroscience.2019.03.054
[36] Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus[J]. Front Syst Neurosci, 2019, 13: 88.
[37] Sedley W, Gander PE, Kumar S, et al. Intracranial Mapping of a Cortical Tinnitus System using Residual Inhibition[J]. Curr Biol, 2015, 25(9): 1208-1214. doi: 10.1016/j.cub.2015.02.075
[38] Jastreboff PJ, Hazell JW. A neurophysiological approach to tinnitus: clinical implications[J]. Br J Audiol, 1993, 27(1): 7-17. doi: 10.3109/03005369309077884
[39] Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus[J]. Neuron, 2010, 66(6): 819-826. doi: 10.1016/j.neuron.2010.04.032
[40] Chen YC, Li X, Liu L, et al. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network[J]. Elife, 2015, 4: e06576. doi: 10.7554/eLife.06576