听觉中枢可塑性与耳鸣发生机制的研究进展

罗扬拓, 冯帅, 姜学钧, 等. 听觉中枢可塑性与耳鸣发生机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(11): 1038-1041. doi: 10.13201/j.issn.2096-7993.2021.11.017
引用本文: 罗扬拓, 冯帅, 姜学钧, 等. 听觉中枢可塑性与耳鸣发生机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(11): 1038-1041. doi: 10.13201/j.issn.2096-7993.2021.11.017
LUO Yangtuo, FENG Shuai, JIANG Xuejun, et al. Research progress in auditory center plasticity and tinnitus mechanism[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(11): 1038-1041. doi: 10.13201/j.issn.2096-7993.2021.11.017
Citation: LUO Yangtuo, FENG Shuai, JIANG Xuejun, et al. Research progress in auditory center plasticity and tinnitus mechanism[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(11): 1038-1041. doi: 10.13201/j.issn.2096-7993.2021.11.017

听觉中枢可塑性与耳鸣发生机制的研究进展

  • 基金项目:
    国家自然科学基金重点项目(No: 81830030);国家自然科学基金面上项目(No: 82071037)
详细信息
    通讯作者: 罗扬拓,E-mail:luoyt@live.cn
  • 中图分类号: R764

Research progress in auditory center plasticity and tinnitus mechanism

More Information
  • 加载中
  • 图 1  耳鸣产生过程中听觉中枢出现增益的模式图

  • [1]

    Piccirillo JF, Rodebaugh TL, Lenze EJ. Tinnitus[J]. JAMA, 2020.

    [2]

    贾若, 刘博, 成雷, 等. 耳鸣患者睡眠质量的临床分析[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(10): 961-965. doi: 10.13201/j.issn.1001-1781.2019.10.015

    [3]

    Vona B, Nanda I, Shehata-Dieler W, et al. Genetics of Tinnitus: Still in its Infancy[J]. Front Neurosci, 2017, 11: 236. doi: 10.3389/fnins.2017.00236

    [4]

    Baguley D, McFerran D, Hall D. Tinnitus[J]. Lancet, 2013, 382(9904): 1600-7. doi: 10.1016/S0140-6736(13)60142-7

    [5]

    Sheppard A, Stocking C, Ralli M, et al. A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis[J]. Int J Audiol, 2020, 59(1): 5-15. doi: 10.1080/14992027.2019.1660812

    [6]

    Sedley W. Tinnitus: Does Gain Explain?[J]. Neuroscience, 2019, 407: 213-228. doi: 10.1016/j.neuroscience.2019.01.027

    [7]

    Jackson P. A comparison of the effects of eighth nerve section with lidocaine on tinnitus[J]. J Laryngol Otol, 1985, 99(7): 663-666. doi: 10.1017/S0022215100097449

    [8]

    Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms[J]. Hear Res, 2017, 349: 138-147. doi: 10.1016/j.heares.2017.01.003

    [9]

    Strumila R, Lengvenyt A, Vainutien V, et al. The role of questioning environment, personality traits, depressive and anxiety symptoms in tinnitus severity perception[J]. Psychiatr Q, 2017, 88(4): 865-877. doi: 10.1007/s11126-017-9502-2

    [10]

    Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate(NMDA)receptors may participate in a stress-mediated Type-Ⅰ auditory neural exacerbation of tinnitus[J]. Brain Res, 2013, 1499: 80-108. doi: 10.1016/j.brainres.2013.01.006

    [11]

    Kobel M, Le Prell CG, Liu J, et al. Noise-induced cochlear synaptopathy: Past findings and future studies[J]. Hear Res, 2017, 349: 148-154. doi: 10.1016/j.heares.2016.12.008

    [12]

    Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res, 2015, 330(Pt B): 191-199.

    [13]

    Liu K, Jiang X, Shi C, et al. Cochlear inner hair cell ribbon synapse is the primary target of ototoxic aminoglycoside stimuli[J]. Mol Neurobiol, 2013, 48(3): 647-654. doi: 10.1007/s12035-013-8454-2

    [14]

    Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea[J]. Physiol Rev, 2020, 100(1): 103-144. doi: 10.1152/physrev.00026.2018

    [15]

    柳柯, 龚树生. 隐匿性听力损失和耳蜗带状突触病变—对听觉损害与保护的新考量[J]. 中华耳科学杂志, 2019, 17(2): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHER201902004.htm

    [16]

    Zhang W, Peng Z, Yu S, et al. Loss of Cochlear Ribbon Synapse Is a Critical Contributor to Chronic Salicylate Sodium Treatment-Induced Tinnitus without Change Hearing Threshold[J]. Neural Plast, 2020, 2020: 3949161.

    [17]

    Singer W, Zuccotti A, Jaumann M, et al. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus[J]. Mol Neurobiol, 2013, 47(1): 261-279. doi: 10.1007/s12035-012-8372-8

    [18]

    Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?[J]. J Neurophysiol, 2014, 111(3): 552-564. doi: 10.1152/jn.00184.2013

    [19]

    Kaltenbach JA, Afman CE. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus[J]. Hear Res, 2000, 140(1-2): 165-172. doi: 10.1016/S0378-5955(99)00197-5

    [20]

    Salvi RJ, Saunders SS, Gratton MA, et al. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma[J]. Hear Res, 1990, 50(1-2): 245-257. doi: 10.1016/0378-5955(90)90049-U

    [21]

    Bilak M, Kim J, Potashner SJ, et al. New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma[J]. Exp Neurol, 1997, 147(2): 256-268. doi: 10.1006/exnr.1997.6636

    [22]

    Mulders WH, Robertson D. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity[J]. Neuroscience, 2009, 164(2): 733-746. doi: 10.1016/j.neuroscience.2009.08.036

    [23]

    Mulders WH, Robertson D. Progressive centralization of midbrain hyperactivity after acoustic trauma[J]. Neuroscience, 2011, 192: 753-760. doi: 10.1016/j.neuroscience.2011.06.046

    [24]

    Knipper M, van Dijk P, Schulze H, et al. The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants[J]. J Neurosci, 2020, 40(38): 7190-7202. doi: 10.1523/JNEUROSCI.1314-19.2020

    [25]

    Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis[J]. Front Neurol, 2014, 5: 206.

    [26]

    Ngodup T, Goetz JA, McGuire BC, et al. Activity-dependent, homeostatic regulation of neurotransmitter release from auditory nerve fibers[J]. Proc Natl Acad Sci U S A, 2015, 112(20): 6479-6484. doi: 10.1073/pnas.1420885112

    [27]

    Zheng Y, Dixon S, McPherson K, et al. Glutamic acid decarboxylase levels in the cochlear nucleus of rats with acoustic trauma-induced chronic tinnitus[J]. Neurosci Lett, 2015, 586: 60-64. doi: 10.1016/j.neulet.2014.11.047

    [28]

    Ueyama T, Donishi T, Ukai S, et al. Alterations of Regional Cerebral Blood Flow in Tinnitus Patients as Assessed Using Single-Photon Emission Computed Tomography[J]. PLoS One, 2015, 10(9): e0137291. doi: 10.1371/journal.pone.0137291

    [29]

    Job A, Jaroszynski C, Kavounoudias A, et al. Functional Connectivity in Chronic Nonbothersome Tinnitus Following Acoustic Trauma: A Seed-Based Resting-State Functional Magnetic Resonance Imaging Study[J]. Brain Connect, 2020, 10(6): 279-291. doi: 10.1089/brain.2019.0712

    [30]

    Niu Y, Kumaraguru A, Wang R, et al. Hyperexcitability of inferior colliculus neurons caused by acute noise exposure[J]. J Neurosci Res, 2013, 91(2): 292-299. doi: 10.1002/jnr.23152

    [31]

    李刚, 李明, 张剑宁. 个性化音乐治疗耳鸣的机制及研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(1): 91-95. doi: 10.13201/j.issn.2096-7993.2021.01.024

    [32]

    Hayes SH, Schormans AL, Sigel G, et al. Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation[J]. Prog Neurobiol, 2021, 196: 101893. doi: 10.1016/j.pneurobio.2020.101893

    [33]

    Sedley W, Alter K, Gander PE, et al. Exposing Pathological Sensory Predictions in Tinnitus Using Auditory Intensity Deviant Evoked Responses[J]. J Neurosci, 2019, 39(50): 10096-10103. doi: 10.1523/JNEUROSCI.1308-19.2019

    [34]

    Leaver AM, Seydell-Greenwald A, Rauschecker JP. Auditory-limbic interactions in chronic tinnitus: Challenges for neuroimaging research[J]. Hear Res, 2016, 334: 49-57. doi: 10.1016/j.heares.2015.08.005

    [35]

    Qu T, Qi Y, Yu S, et al. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram[J]. Neuroscience, 2019, 408: 31-45. doi: 10.1016/j.neuroscience.2019.03.054

    [36]

    Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus[J]. Front Syst Neurosci, 2019, 13: 88.

    [37]

    Sedley W, Gander PE, Kumar S, et al. Intracranial Mapping of a Cortical Tinnitus System using Residual Inhibition[J]. Curr Biol, 2015, 25(9): 1208-1214. doi: 10.1016/j.cub.2015.02.075

    [38]

    Jastreboff PJ, Hazell JW. A neurophysiological approach to tinnitus: clinical implications[J]. Br J Audiol, 1993, 27(1): 7-17. doi: 10.3109/03005369309077884

    [39]

    Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus[J]. Neuron, 2010, 66(6): 819-826. doi: 10.1016/j.neuron.2010.04.032

    [40]

    Chen YC, Li X, Liu L, et al. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network[J]. Elife, 2015, 4: e06576. doi: 10.7554/eLife.06576

  • 加载中

(1)

计量
  • 文章访问数:  1392
  • PDF下载数:  1295
  • 施引文献:  0
出版历程
收稿日期:  2020-10-30
刊出日期:  2021-11-05

目录