变应性鼻炎的神经免疫调节机制

蔡诗茹, 娄鸿飞. 变应性鼻炎的神经免疫调节机制[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(9): 859-864. doi: 10.13201/j.issn.2096-7993.2021.09.021
引用本文: 蔡诗茹, 娄鸿飞. 变应性鼻炎的神经免疫调节机制[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(9): 859-864. doi: 10.13201/j.issn.2096-7993.2021.09.021
CAI Shiru, LOU Hongfei. Neuroimmunomodulation in allergic rhinitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(9): 859-864. doi: 10.13201/j.issn.2096-7993.2021.09.021
Citation: CAI Shiru, LOU Hongfei. Neuroimmunomodulation in allergic rhinitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(9): 859-864. doi: 10.13201/j.issn.2096-7993.2021.09.021

变应性鼻炎的神经免疫调节机制

  • 基金项目:
    国家自然科学基金重点项目(No:81630023);国家自然科学基金面上项目(No:81970850,81870698,81470678);国家自然科学基金青年项目(No:81400444);北京市科技计划课题(No:Z181100001618002);北京市东城区优秀人才(No:2020-dchrcpyzz-31)
详细信息

Neuroimmunomodulation in allergic rhinitis

More Information
  • 加载中
  • 图 1  AR的神经免疫调节机制

  • [1]

    Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011[J]. Allergy, 2016, 71(8): 1170-1180. doi: 10.1111/all.12874

    [2]

    张竞莹, 李璐鑫, 冀永进, 等. 单侧翼管神经切断术治疗变应性鼻炎的疗效及影响因素分析[J]. 中国耳鼻咽喉颅底外科杂志, 2020, 26(6): 666-669. https://www.cnki.com.cn/Article/CJFDTOTAL-ZEBY202006013.htm

    [3]

    Le DD, Schmit D, Heck S, et al. Increase of Mast Cell-Nerve Association and Neuropeptide Receptor Expression on Mast Cells in Perennial Allergic Rhinitis[J]. Neuroimmunomodulation, 2016, 23(5/6): 261-270.

    [4]

    Durcan N, Costello RW, McLean WG, et al. Eosinophil-mediated cholinergic nerve remodeling[J]. Am J Respir Cell Mol Biol, 2006, 34(6): 775-786. doi: 10.1165/rcmb.2005-0196OC

    [5]

    Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care[J]. Allergy, 2019, 74(12): 2293-2311. doi: 10.1111/all.13851

    [6]

    Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics[J]. Int Immunol, 2017, 29(6): 247-261. doi: 10.1093/intimm/dxx040

    [7]

    Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns[J]. Annu Rev Immunol, 2020, 38: 49-77. doi: 10.1146/annurev-immunol-071719-094903

    [8]

    Mollanazar NK, Smith PK, Yosipovitch G. Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out?[J]. Clin Rev Allergy Immunol, 2016, 51(3): 263-292. doi: 10.1007/s12016-015-8488-5

    [9]

    李秋婷, 赵长青. 肥大细胞脱颗粒的神经免疫调控机制研究[J]. 临床耳鼻咽喉头颈外科杂志, 2015, 29(12): 1118-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201512019.htm

    [10]

    Hu H, Zhang R, Fang X, et al. Effects of endogenous substance P expression on degranulation in RBL-2H3 cells[J]. Inflamm Res, 2011, 60(6): 541-546. doi: 10.1007/s00011-010-0301-6

    [11]

    Larsson O, Tengroth L, Xu Y, et al. Substance P represents a novel first-line defense mechanism in the nose[J]. J Allergy Clin Immunol, 2018, 141(1): 128-136. e3. doi: 10.1016/j.jaci.2017.01.021

    [12]

    Saunders CJ, Christensen M, Finger TE, et al. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation[J]. Proc Natl Acad Sci U S A, 2014, 111(16): 6075-6080. doi: 10.1073/pnas.1402251111

    [13]

    Wang H, Zhang R, Wu J, et al. Knockdown of neurokinin-1 receptor expression by small interfering RNA prevents the development of allergic rhinitis in rats[J]. Inflamm Res, 2013, 62(10): 903-910. doi: 10.1007/s00011-013-0649-5

    [14]

    Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases[J]. J Allergy Clin Immunol, 2016, 138(3): 700-710. doi: 10.1016/j.jaci.2016.04.051

    [15]

    Fujisawa D, Kashiwakura J, Kita H, et al. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria[J]. J Allergy Clin Immunol, 2014, 134(3): 622-633. e9. doi: 10.1016/j.jaci.2014.05.004

    [16]

    Sobkowiak P, Langwiński W, Nowakowska J, et al. Neuroinflammatory Gene Expression Pattern Is Similar between Allergic Rhinitis and Atopic Dermatitis but Distinct from Atopic Asthma[J]. Biomed Res Int, 2020, 2020: 7196981.

    [17]

    Matsumoto Y, Yokoi H, Kimura T, et al. Gastrin-Releasing Peptide Is Involved in the Establishment of Allergic Rhinitis in Mice[J]. Laryngoscope, 2018, 128(11): E377-E384. doi: 10.1002/lary.27394

    [18]

    Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders[J]. Gut, 2016, 65(1): 155-168. doi: 10.1136/gutjnl-2015-309151

    [19]

    Ricciardolo F, Folkerts G, Folino A, et al. Bradykinin in asthma: Modulation of airway inflammation and remodelling[J]. Eur J Pharmacol, 2018, 827: 181-188. doi: 10.1016/j.ejphar.2018.03.017

    [20]

    Nagira Y, Goto K, Tanaka H, et al. Prostaglandin D2 Modulates Neuronal Excitation of the Trigeminal Ganglion to Augment Allergic Rhinitis in Guinea Pigs[J]. J Pharmacol Exp Ther, 2016, 357(2): 273-280. doi: 10.1124/jpet.115.231225

    [21]

    Liang WJ, Zhang G, Luo HS, et al. Tryptase and Protease-Activated Receptor 2 Expression Levels in Irritable Bowel Syndrome[J]. Gut Liver, 2016, 10(3): 382-390.

    [22]

    Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons[J]. Immunology, 2017, 151(1): 1-15. doi: 10.1111/imm.12717

    [23]

    Chowdary PD, Che DL, Cui B. Neurotrophin signaling via long-distance axonal transport[J]. Annu Rev Phys Chem, 2012, 63: 571-594. doi: 10.1146/annurev-physchem-032511-143704

    [24]

    Raap U, Fokkens W, Bruder M, et al. Modulation of neurotrophin and neurotrophin receptor expression in nasal mucosa after nasal allergen provocation in allergic rhinitis[J]. Allergy, 2008, 63(4): 468-475. doi: 10.1111/j.1398-9995.2008.01626.x

    [25]

    王豪, 陈仁辉, 钟燕青, 等. 变应性鼻炎患者外周血中神经营养因子mRNA的表达及与Th1/Th2免疫失衡的关系[J]. 临床耳鼻咽喉头颈外科杂志, 2014, 28(14): 1024-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201414004.htm

    [26]

    Gelincik A, Aydın F, Ozerman B, et al. Enhanced nerve growth factor expression by mast cells does not differ significantly between idiopathic and allergic rhinitis[J]. Ann Allergy Asthma Immunol, 2012, 108(6): 396-401. doi: 10.1016/j.anai.2012.04.006

    [27]

    Han H, Yang C, Zhang Y, et al. Vascular Endothelial Growth Factor Mediates the Sprouted Axonogenesis of Breast Cancer in Rat[J]. Am J Pathol, 2021, 191(3): 515-526. doi: 10.1016/j.ajpath.2020.12.006

    [28]

    Masuoka T, Yamashita Y, Yoshida J, et al. Sensitization of glutamate receptor-mediated pain behaviour via nerve growth factor-dependent phosphorylation of transient receptor potential V1 under inflammatory conditions[J]. Br J Pharmacol, 2020, 177(18): 4223-4241. doi: 10.1111/bph.15176

    [29]

    Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and Its Receptors in the Regulation of Inflammatory Response[J]. Int J Mol Sci, 2017, 18(5): 1028. doi: 10.3390/ijms18051028

    [30]

    Liu BW, Zhang J, Hong YS, et al. NGF-Induced Nav1.7 Upregulation Contributes to Chronic Post-surgical Pain by Activating SGK1-Dependent Nedd4-2 Phosphorylation[J]. Mol Neurobiol, 2021, 58(3): 964-982. doi: 10.1007/s12035-020-02156-1

    [31]

    Metcalfe DD, Pawankar R, Ackerman SJ, et al. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases[J]. World Allergy Organ J, 2016, 9: 7. doi: 10.1186/s40413-016-0094-3

    [32]

    Herraiz C, Journé F, Abdel-Malek Z, et al. Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT[J]. Mol Endocrinol, 2011, 25(1): 138-156. doi: 10.1210/me.2010-0217

    [33]

    Wang W, Guo DY, Lin YJ, et al. Melanocortin Regulation of Inflammation[J]. Front Endocrinol(Lausanne), 2019, 10: 683. doi: 10.3389/fendo.2019.00683

    [34]

    Böhm M, Apel M, Sugawara K, et al. Modulation of basophil activity: a novel function of the neuropeptide α-melanocyte-stimulating hormone[J]. J Allergy Clin Immunol, 2012, 129(4): 1085-1093. doi: 10.1016/j.jaci.2011.11.012

    [35]

    Kleiner S, Braunstahl GJ, Rüdrich U, et al. Regulation of melanocortin 1 receptor in allergic rhinitis in vitro and in vivo[J]. Clin Exp Allergy, 2016, 46(8): 1066-1074. doi: 10.1111/cea.12759

    [36]

    El-Shazly AE, Roncarati P, Lejeune M, et al. Tyrosine kinase inhibition is an important factor for gene expression of CRTH2 in human eosinophils and lymphocytes: A novel mechanism for explaining eosinophils recruitment by the neuro-immune axis in allergic rhinitis[J]. Int Immunopharmacol, 2017, 45: 180-186. doi: 10.1016/j.intimp.2017.02.015

    [37]

    El-Shazly AE, Begon DY, Kustermans G, et al. Novel association between vasoactive intestinal peptide and CRTH2 receptor in recruiting eosinophils: a possible biochemical mechanism for allergic eosinophilic inflammation of the airways[J]. J Biol Chem, 2013, 288(2): 1374-1384. doi: 10.1074/jbc.M112.422675

    [38]

    Kim DH, Park IH, Cho JS, et al. Alterations of vasoactive intestinal polypeptide receptors in allergic rhinitis[J]. Am J Rhinol Allergy, 2011, 25(1): e44-47. doi: 10.2500/ajra.2011.25.3568

    [39]

    Drake MG, Scott GD, Blum ED, et al. Eosinophils increase airway sensory nerve density in mice and in human asthma[J]. Sci Transl Med, 2018, 10(457): eaar 8477. doi: 10.1126/scitranslmed.aar8477

    [40]

    Mandhane SN, Shah JH, Thennati R. Allergic rhinitis: an update on disease, present treatments and future prospects[J]. Int Immunopharmacol, 2011, 11(11): 1646-1662. doi: 10.1016/j.intimp.2011.07.005

    [41]

    Akasheh N, Walsh MT, Costello RW. Eosinophil peroxidase induces expression of cholinergic genes via cell surface neural interactions[J]. Mol Immunol, 2014, 62(1): 37-45. doi: 10.1016/j.molimm.2014.05.014

    [42]

    Jacoby DB, Gleich GJ, Fryer AD. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor[J]. J Clin Invest, 1993, 91(4): 1314-1318. doi: 10.1172/JCI116331

    [43]

    Liu Z, Yang X, Liu X, et al. Analysis of expression of ILC2 cells in nasal mucosa based on animal model of allergic bacterial infection rhinitis[J]. J Infect Public Health, 2021, 14(1): 77-83. doi: 10.1016/j.jiph.2019.09.010

    [44]

    Kato A. Group 2 Innate Lymphoid Cells in Airway Diseases[J]. Chest, 2019, 156(1): 141-149. doi: 10.1016/j.chest.2019.04.101

    [45]

    Wallrapp A, Riesenfeld SJ, Burkett PR, et al. Erratum: The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation[J]. Nature, 2017, 551(7682): 658.

    [46]

    Cardoso V, Chesné J, Ribeiro H, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U[J]. Nature, 2017, 549(7671): 277-281. doi: 10.1038/nature23469

    [47]

    Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses[J]. Science, 2018, 360(6393): eaan 8546. doi: 10.1126/science.aan8546

    [48]

    Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis[J]. Nature, 2013, 502(7470): 245-248. doi: 10.1038/nature12526

    [49]

    Moriyama S, Brestoff JR, Flamar AL, et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses[J]. Science, 2018, 359(6379): 1056-1061. doi: 10.1126/science.aan4829

  • 加载中

(1)

计量
  • 文章访问数:  1549
  • PDF下载数:  688
  • 施引文献:  0
出版历程
收稿日期:  2020-10-20
刊出日期:  2021-09-05

目录