聋病基因诊断在评估人工耳蜗植入术预后中的价值

张会敏, 陈森, 孙宇, 等. 聋病基因诊断在评估人工耳蜗植入术预后中的价值[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(3): 274-281. doi: 10.13201/j.issn.2096-7993.2021.03.020
引用本文: 张会敏, 陈森, 孙宇, 等. 聋病基因诊断在评估人工耳蜗植入术预后中的价值[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(3): 274-281. doi: 10.13201/j.issn.2096-7993.2021.03.020
ZHANG Huimin, CHEN Sen, SUN Yu, et al. The value of genetic diagnosis of deafness in evaluating the prognosis of cochlear implantation[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(3): 274-281. doi: 10.13201/j.issn.2096-7993.2021.03.020
Citation: ZHANG Huimin, CHEN Sen, SUN Yu, et al. The value of genetic diagnosis of deafness in evaluating the prognosis of cochlear implantation[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(3): 274-281. doi: 10.13201/j.issn.2096-7993.2021.03.020

聋病基因诊断在评估人工耳蜗植入术预后中的价值

  • 基金项目:
    国家自然科学基金面上项目(No:81470696)
详细信息

The value of genetic diagnosis of deafness in evaluating the prognosis of cochlear implantation

More Information
  • 加载中
  • 图 1  致聋基因表达及编码蛋白在内耳中的主要分布

    表 1  POU3F4突变患者的人工耳蜗植入结果

    术后效果 基因型(均为半合子) 发病年龄/岁 植入年龄/岁 评价标准 参考文献
    c.383delG(p.G128fs) 3.0 15 开放式定词测验 Lee等[9]
    X362TrpextX106 0.5 2.25 标准化语言测试 Kim等[14]
    c.669T>A(p.Y223X) 0 5 语言学习 Su等[15]
    c.950T>A(p.L317X) - - CAP、SIR、言语感知 Wu等[16]
    欠佳 c.927-929del CTC(p.S310del) 2.5 3.7 闭合式单音节、开放式字识别 Stankovic等[10]
    欠佳 c.C76>T(p.Q26*) 0 13 声音刺激、语言能力 Wu等[11]
    623T>A(p.L208X) 1.25 6 智力、声音、言语、注意障碍 Lee等[9]
    c.499c>T(p.R167X) 0.25 1.6 闭合式单音节,开放式字识别 Stankovic等[10]
    c.623T>A,Xq21.2(80851535-82597832bp),Xq21.2(81810457-82810060bp),c.1060delA,c.1084T>C,c.910C>A,c.686A>G 0.28 4.8 CAP、智力 Choi等[12]
    下载: 导出CSV

    表 2  TMPRSS3突变患者的人工耳蜗植入结果

    术后效果 基因型 发病年龄/岁 植入年龄/岁 评价标准 参考文献
    c.207delC/c.916G>A,c.595G>A/ c.916G>A 语前 - 言语感知测试 Weegerink等[20]
    c.325C>T/c.916G>A 语前 5 开放式句子测试 Chung等[23]
    c.208delC纯合子 0 1.36 言语感知测试、主流学校 Battelino等[24]
    c.916G>A/c.1250G>A 2 3 语言能力 Gao等[25]
    c.325C>T/c.916G>A 语后 11 开放式句子测试 Chung等[23]
    c.413C>A/c.916G>A,c.413C>A/c.323-6G>A,c.207delC/c.1276G>A,c.413C>A/c.595G>A 语后 - 言语感知测试 Weegerink等[20]
    c.646C>T/c.916G>A 语后 6~20 - Elbracht等[26]
    c.323-6G>A/c.916G>A 9 14 语言能力 Gao等[25]
    c.390C>G/c.647G>T,c.226C>T/c.778G>A,c.212T>C/617-3-4dupAT 23 47.7 日语单音节测试 Miyagawa等[27]
    c.36delC/c.916G>A 3 6 开放式句子测试 Gao等[28]
    c.607C>T/c.778G>A,c.647G>T/c.771G>T - 42 听力保留评分 Yoshimura等[29]
    c.413C>A/c.646C>T,c.413C>A/c.916G>A 5.5 39.5 辅音-核心辅音测试 Eppsteiner等[21]
    c.208delC/c.1273G>A,c.413C>A/c.1273G>A,c.1345-2A>G纯合子 语后 51.7 ECochG Shearer等[22]
    下载: 导出CSV

    表 3  WFS1突变患者的人工耳蜗植入结果

    术后效果 基因型(均为杂合子) 发病年龄/岁 植入年龄/岁 评价标准 参考文献
    c.173C>T(p.A58V) - 5.6 CAP、SIR Liu等[33]
    c.1453C>T(p.Q485X) - - CAP、SIR、言语感知 Wu等[16]
    欠佳 c.2508G>C(p.K836N) 8 57 语音识别 Hogewind等[34]
    c.2492G>A(p.G831S) 1.6 3.5 语言发育差 Häkli等[35]
    下载: 导出CSV

    表 4  KNCQ1突变患者的人工耳蜗植入结果

    术后效果 基因型 发病年龄/岁 植入年龄/岁 评价标准 参考文献
    c.1686-1G>A纯合子 - 3.25 听力康复 Chorbachi等[38]
    QVLQT1纯合子 1.4 3.0 开放式词组识别、词组理解、词汇能力 Berrettini等[39]
    p.R518X/c.572delTGCGC,p.Q530X纯合子,c.572delTGCGC纯合子 0 1.5 听觉感知、开放式测试、婴幼儿言语听觉反应评估 Siem等[37]
    c.DelGCGCC/c.1134delC - 49.0 ECochG Shearer等[22]
    c.1741A>T/c.477+5G>A 0 2.7 日常生活听觉 Qiu等[40]
    欠佳 c.572delTGCGC纯合子 3 3.1 句中主要词 Siem等[37]
    下载: 导出CSV

    表 5  USH1突变患者的人工耳蜗植入结果

    术后效果 基因型 发病年龄/岁 植入年龄/岁 评价标准 参考文献
    MYO7A:p.R1240Q纯合子,p.R1602Q&1170K/ p.R1240Q - 8.3 G(C)BI、EHL(等效听力水平) Pennings等[44]
    MYO7A:c.4477G>A杂合子,c.0652G>A杂合子 - 19.0 听力保留评分 Yoshimura等[29]
    欠佳 MYO7A:p.R666X/p.R302H,p.R1602Q&1170K/p.R212H - 21.7 G(C)BI、EHL Pennings等[44]
    CDH23:p.P240L/p.R301Q,p.D1216A&V1807M/p.Q1716P 0.3 4.0 单词识别、婴幼儿言语听觉反应评估 Usami等[45]
    CDH23:c.4762C>T纯合子,c.719C>T/c.902C>T,c.719C>T/c.6085C>T,c.2866C>T/c.4762C>T,c.719C>T/c.2866C>T - 34.0 听力保留评分 Yoshimura等[29]
    欠佳 CDH23:p.R1305X纯合子 语前 6.0 IT-MAIS(婴幼儿听力整合问卷)、CAP、QACIU(CI使用评估) Liu等[43]
    CDH23:p.R1305X纯合子 语前 7.0 IT-MAIS、CAP、QACIU Liu等[43]
    CDH23:IVS20+1G>A杂合子 - 20.1 G(C)BI、EHL Pennings等[44]
    PCDH15:c.145G>T杂合子,c.4744delC杂合子,c.1863-1864dup纯合子,c.4320-4328dup/c.3451G>A,c.4812G>T纯合子 - 2.9 CAP、SIR、言语感知 Wu等[16]
    欠佳 PCDH15/CDH23:16delT/c.9565C>T 语前 11.0 IT-MAIS、CAP、QACIU Liu等[43]
    下载: 导出CSV

    表 6  TIMM8a突变患者的人工耳蜗植入结果

    术后效果 基因型 发病年龄/岁 植入年龄/岁 评价标准 参考文献
    欠佳 内含子1C.13211G>A 0 4 语音识别、智力 Cif等[48]
    Xq22缺失BTK基因第17~19外显子/TIMM8a第1外显子 4 4 语言和听力测试 Brookes等[46]
    下载: 导出CSV
  • [1]

    苏钰, 戴朴. 耳聋基因诊断在人工耳蜗植入中的应用[J]. 中华耳科学杂志, 2018, 16(6): 785-790. doi: 10.3969/j.issn.1672-2922.2018.06.009

    [2]

    Liu W, Edin F, Blom H, et al. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man[J]. Cell Tissue Res, 2016, 365(1): 13-27. doi: 10.1007/s00441-016-2359-0

    [3]

    Cohen-Salmon M, Ott T, Michel V, et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death[J]. Curr Biol, 2002, 12(13): 1106-1111. doi: 10.1016/S0960-9822(02)00904-1

    [4]

    Chen S, Sun Y, Lin X, et al. Down regulated connexin26 at different postnatal stage displayed different types of cellular degeneration and formation of organ of Corti[J]. Biochem Biophys Res Commun, 2014, 445(1): 71-77. doi: 10.1016/j.bbrc.2014.01.154

    [5]

    Roux I, Safieddine S, Nouvian R, et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse[J]. Cell, 2006, 127(2): 277-289. doi: 10.1016/j.cell.2006.08.040

    [6]

    Rouillon I, Marcolla A, Roux I, et al. Results of cochlear implantation in two children with mutations in the OTOF gene[J]. Int J Pediatr Otorhinolaryngol, 2006, 70(4): 689-696. doi: 10.1016/j.ijporl.2005.09.006

    [7]

    Nishio SY, Takumi Y, Usami SI. Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea[J]. Hear Res, 2017, 348: 87-97. doi: 10.1016/j.heares.2017.02.017

    [8]

    Phippard D, Lu L, Lee D, et al. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear[J]. J Neurosci, 1999, 19(14): 5980-5989. doi: 10.1523/JNEUROSCI.19-14-05980.1999

    [9]

    Lee HK, Lee SH, Lee KY, et al. Novel POU3F4 mutations and clinical features of DFN3 patients with cochlear implants[J]. Clin Genet, 2009, 75(6): 572-575. doi: 10.1111/j.1399-0004.2009.01181.x

    [10]

    Stankovic KM, Hennessey AM, Herrmann B, et al. Cochlear implantation in children with congenital X-linked deafness due to novel mutations in POU3F4 gene[J]. Ann Otol Rhinol Laryngol, 2010, 119(12): 815-822. doi: 10.1177/000348941011901205

    [11]

    Wu HM, Jie HQ, Wang H, et al. A novel POU domain class 3 transcription factor 4 mutation causes X-linked non-syndromic hearing loss in a Chinese family[J]. Chin Med J(Engl), 2019, 132(18): 2251-2253.

    [12]

    Choi BY, An YH, Song JJ, et al. Clinical observations and molecular variables of patients with hearing loss and incomplete partition type Ⅲ[J]. Laryngoscope, 2016, 126(3): E123-128. doi: 10.1002/lary.25573

    [13]

    Choi BY, Kim DH, Chung T, et al. Destabilization and mislocalization of POU3F4 by C-terminal frameshift truncation and extension mutation[J]. Hum Mutat, 2013, 34(2): 309-316. doi: 10.1002/humu.22232

    [14]

    Kim L, Wisely CE, Lucius S, et al. Positive Outcomes and Surgical Strategies for Bilateral Cochlear Implantation in a Child With X-Linked Deafness[J]. Ann Otol Rhinol Laryngol, 2016, 125(2): 173-176. doi: 10.1177/0003489415604167

    [15]

    Su Y, Gao X, Huang SS, et al. Clinical and molecular characterization of POU3F4 mutations in multiple DFNX2 Chinese families[J]. BMC Med Genet, 2018, 19(1): 157. doi: 10.1186/s12881-018-0630-9

    [16]

    Wu CC, Lin YH, Liu TC, et al. Identifying Children With Poor Cochlear Implantation Outcomes Using Massively Parallel Sequencing[J]. Medicine(Baltimore), 2015, 94(27): e1073.

    [17]

    Kim HM, Wangemann P. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin[J]. PLoS One, 2011, 6(3): e17949. doi: 10.1371/journal.pone.0017949

    [18]

    Guipponi M, Antonarakis SE, Scott HS. TMPRSS3, a type Ⅱ transmembrane serine protease mutated in non-syndromic autosomal recessive deafness[J]. Front Biosci, 2008, 13: 1557-1567. doi: 10.2741/2780

    [19]

    Peng A, Li Y, Pan X, et al. Survival of Cochlear Spiral Ganglion Neurons Improved In vivo by Anti-miR204 via TMPRSS3 [J]. West Indian Med J, 2015, 65(2): 379-382.

    [20]

    Weegerink NJ, Schraders M, Oostrik J, et al. Genotype-phenotype correlation in DFNB8/10 families with TMPRSS3 mutations[J]. J Assoc Res Otolaryngol, 2011, 12(6): 753-766. doi: 10.1007/s10162-011-0282-3

    [21]

    Eppsteiner RW, Shearer AE, Hildebrand MS, et al. Prediction of cochlear implant performance by genetic mutation: the spiral ganglion hypothesis[J]. Hear Res, 2012, 292(1/2): 51-58.

    [22]

    Shearer AE, Tejani VD, Brown CJ, et al. In Vivo Electrocochleography in Hybrid Cochlear Implant Users Implicates TMPRSS3 in Spiral Ganglion Function[J]. Sci Rep, 2018, 8(1): 14165. doi: 10.1038/s41598-018-32630-9

    [23]

    Chung J, Park SM, Chang SO, et al. A novel mutation of TMPRSS3 related to milder auditory phenotype in Korean postlingual deafness: a possible future implication for a personalized auditory rehabilitation[J]. J Mol Med(Berl), 2014, 92(6): 651-663.

    [24]

    Battelino S, Klancar G, Kovac J, et al. TMPRSS3 mutations in autosomal recessive nonsyndromic hearing loss[J]. Eur Arch Otorhinolaryngol, 2016, 273(5): 1151-1154. doi: 10.1007/s00405-015-3671-0

    [25]

    Gao X, Huang SS, Yuan YY, et al. Identification of TMPRSS3 as a Significant Contributor to Autosomal Recessive Hearing Loss in the Chinese Population[J]. Neural Plast, 2017, 2017: 3192090.

    [26]

    Elbracht M, Senderek J, Eggermann T, et al. Autosomal recessive postlingual hearing loss(DFNB8): compound heterozygosity for two novel TMPRSS3 mutations in German siblings[J]. J Med Genet, 2007, 44(6): e81. doi: 10.1136/jmg.2007.049122

    [27]

    Miyagawa M, Nishio SY, Sakurai Y, et al. The patients associated with TMPRSS3 mutations are good candidates for electric acoustic stimulation[J]. Ann Otol Rhinol Laryngol, 2015, 124 Suppl 1: 193S-204S.

    [28]

    Gao X, Yuan YY, Wang GJ, et al. Novel Mutations and Mutation Combinations of TMPRSS3 Cause Various Phenotypes in One Chinese Family with Autosomal Recessive Hearing Impairment[J]. Biomed Res Int, 2017, 2017: 4707315.

    [29]

    Yoshimura H, Moteki H, Nishio SY, et al. Genetic testing has the potential to impact hearing preservation following cochlear implantation[J]. Acta Otolaryngol, 2020, 140(6): 438-444. doi: 10.1080/00016489.2020.1730439

    [30]

    Delmaghani S, del Castillo FJ, Michel V, et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy[J]. Nat Genet, 2006, 38(7): 770-778. doi: 10.1038/ng1829

    [31]

    Cryns K, Thys S, Van Laer L, et al. The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells[J]. Histochem Cell Biol, 2003, 119(3): 247-256. doi: 10.1007/s00418-003-0495-6

    [32]

    Rigoli L, Lombardo F, Di Bella C. Wolfram syndrome and WFS1 gene[J]. Clin Genet, 2011, 79(2): 103-117. doi: 10.1111/j.1399-0004.2010.01522.x

    [33]

    Liu WH, Chang PY, Chang SC, et al. Mutation screening in non-syndromic hearing loss patients with cochlear implantation by massive parallel sequencing in Taiwan[J]. PLoS One, 2019, 14(1): e0211261. doi: 10.1371/journal.pone.0211261

    [34]

    Hogewind BF, Pennings RJ, Hol FA, et al. Autosomal dominant optic neuropathy and sensorineual hearing loss associated with a novel mutation of WFS1[J]. Mol Vis, 2010, 16: 26-35.

    [35]

    Häkli S, Kytövuori L, Luotonen M, et al. WFS1 mutations in hearing-impaired children[J]. Int J Audiol, 2014, 53(7): 446-451. doi: 10.3109/14992027.2014.887230

    [36]

    Wangemann P, Liu J, Marcus DC. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro[J]. Hear Res, 1995, 84(1/2): 19-29.

    [37]

    Siem G, Früh A, Leren TP, et al. Jervell and Lange-Nielsen syndrome in Norwegian children: aspects around cochlear implantation, hearing, and balance[J]. Ear Hear, 2008, 29(2): 261-269. doi: 10.1097/AUD.0b013e3181645393

    [38]

    Chorbachi R, Graham JM, Ford J, et al. Cochlear implantation in Jervell and Lange-Nielsen syndrome[J]. Int J Pediatr Otorhinolaryngol, 2002, 66(3): 213-221. doi: 10.1016/S0165-5876(02)00181-7

    [39]

    Berrettini S, Forli F, Ursino F, et al. Cochlear implant in Jervell and Lange-Nielsen syndrome[J]. Audiological Medicine, 2003, 1(4): 224-227. doi: 10.1080/16513860310001924

    [40]

    Qiu Y, Chen S, Wu X, et al. Jervell and Lange-Nielsen Syndrome due to a Novel Compound Heterozygous KCNQ1 Mutation in a Chinese Family[J]. Neural Plast, 2020, 2020: 3569359.

    [41]

    Zallocchi M, Meehan DT, Delimont D, et al. Role for a novel Usher protein complex in hair cell synaptic maturation[J]. PLoS One, 2012, 7(2): e30573. doi: 10.1371/journal.pone.0030573

    [42]

    Cosgrove D, Zallocchi M. Usher protein functions in hair cells and photoreceptors[J]. Int J Biochem Cell Biol, 2014, 46: 80-89. doi: 10.1016/j.biocel.2013.11.001

    [43]

    Liu XZ, Angeli SI, Rajput K, et al. Cochlear implantation in individuals with Usher type 1 syndrome[J]. Int J Pediatr Otorhinolaryngol, 2008, 72(6): 841-847. doi: 10.1016/j.ijporl.2008.02.013

    [44]

    Pennings RJ, Damen GW, Snik AF, et al. Audiologic performance and benefit of cochlear implantation in Usher syndrome type Ⅰ[J]. Laryngoscope, 2006, 116(5): 717-722. doi: 10.1097/01.mlg.0000205167.08415.9e

    [45]

    Usami S, Miyagawa M, Nishio SY, et al. Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation(EAS)[J]. Acta Otolaryngol, 2012, 132(4): 377-384. doi: 10.3109/00016489.2011.649493

    [46]

    Brookes JT, Kanis AB, Tan LY, et al. Cochlear implantation in deafness-dystonia-optic neuronopathy(DDON)syndrome[J]. Int J Pediatr Otorhinolaryngol, 2008, 72(1): 121-126. doi: 10.1016/j.ijporl.2007.08.019

    [47]

    Roesch K, Hynds PJ, Varga R, et al. The calcium-binding aspartate/glutamate carriers, citrin and aralar1, are new substrates for the DDP1/TIMM8a-TIMM13 complex[J]. Hum Mol Genet, 2004, 13(18): 2101-2111. doi: 10.1093/hmg/ddh217

    [48]

    Cif L, Gonzalez V, Garcia-Ptacek S, et al. Progressive dystonia in Mohr-Tranebjaerg syndrome with cochlear implant and deep brain stimulation[J]. Mov Disord, 2013, 28(6): 737-738. doi: 10.1002/mds.25519

    [49]

    Egilmez OK, Kalcioglu MT. Genetics of Nonsyndromic Congenital Hearing Loss[J]. Scientifica(Cairo), 2016, 2016: 7576064.

    [50]

    黄玉宇, 程岚, 杨军, 等. 耳蜗神经发育不良患儿人工耳蜗植入术前影像和电生理评估[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(8): 729-735. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201908012.htm

    [51]

    Miya SJ, Georgie C, Amanda B, et al. Predicting speech-sound disorder outcomes in school-age children with hearing loss: The VicCHILD experience[J]. Int J Lang Commun Disord, 2020, 55(4): 537-546. doi: 10.1111/1460-6984.12536

  • 加载中

(1)

(6)

计量
  • 文章访问数:  1872
  • PDF下载数:  721
  • 施引文献:  0
出版历程
收稿日期:  2020-12-12
刊出日期:  2021-03-05

目录