基于计算流体力学的阻塞性睡眠呼吸暂停儿童与正常儿童上气道流场对比分析

郭宇峰, 苏丽君, 蔡惠坤, 等. 基于计算流体力学的阻塞性睡眠呼吸暂停儿童与正常儿童上气道流场对比分析[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(2): 141-146. doi: 10.13201/j.issn.2096-7993.2021.02.011
引用本文: 郭宇峰, 苏丽君, 蔡惠坤, 等. 基于计算流体力学的阻塞性睡眠呼吸暂停儿童与正常儿童上气道流场对比分析[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(2): 141-146. doi: 10.13201/j.issn.2096-7993.2021.02.011
GUO Yufeng, SU Lijun, CAI Huikun, et al. Analysis of upper airway flow field between obstructive sleep apnea and normal children based on computational fluid dynamics[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(2): 141-146. doi: 10.13201/j.issn.2096-7993.2021.02.011
Citation: GUO Yufeng, SU Lijun, CAI Huikun, et al. Analysis of upper airway flow field between obstructive sleep apnea and normal children based on computational fluid dynamics[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(2): 141-146. doi: 10.13201/j.issn.2096-7993.2021.02.011

基于计算流体力学的阻塞性睡眠呼吸暂停儿童与正常儿童上气道流场对比分析

  • 基金项目:
    福建省自然科学基金面上项目(No:2018D0018);福建省卫生教育联合攻关计划项目(No:2019-WJ-33)
详细信息

Analysis of upper airway flow field between obstructive sleep apnea and normal children based on computational fluid dynamics

More Information
  • 目的 运用计算流体力学(CFD)分析上气道气流流场特性, 分析正常儿童与阻塞性睡眠呼吸暂停(OSA)儿童上气道流场间的差异, 从气道流体力学方面阐述儿童OSA的病理特征。方法 构建正常儿童和OSA患儿上气道模型, 运用CFD方法模拟两者上气道吸气气流, 分析两者在同一吸气压强条件下气流流速、流动方式、通气量和气道压强等方面的差异, 并开展临床鼻阻力计测量和基于3D打印技术打印实体模型搭建体外实验验证CFD结果。结果 CFD结果与体外3D模型实验及临床测量结果相符合。OSA患儿鼻咽部腺样体区面积为11.274 mm2, 约为正常儿童的1/6。OSA患儿鼻咽部气流流速激增, 流线紊乱; 压强骤降, 占总压降的69.197%;鼻咽部阻力值是正常儿童的6.59倍。正常儿童通气量为116.139 mL/s, 而OSA患儿通气量为47.055 mL/s, 差异率高达59.48%。结论 OSA患儿鼻咽部气流流动较正常儿童有明显的差异。应用CFD可直观地显示气道流场的异常, 帮助临床医生进一步认识儿童OSA的发病机制。
  • 加载中
  • 图 1  上气道三维模型构建流程

    图 2  体外模型实验设备与3D树脂打印上气道模型

    图 3  正常儿童和OSA患儿上气道横截面面积图4  正常儿童(4a)和OSA患儿(4b)上气道吸气气流流线图图5  正常儿童和OSA患儿横截面平均压强值

    图 6  正常儿童(6a)和OSA患儿(6b)上气道壁面压强分布  箭头所指为最小压强处;图7  OSA患儿达到正常儿童通气量下的气道压强变化图  7a:通气量47.055 mL/s时的气道压强;7b:通气量116.139 mL/s时的气道压强

    图 8  CFD结果与临床鼻阻力计测量结果和体外实验结果对比

  • [1]

    Iannella G, Vicini C, Colizza A, et al. Aging effect on sleepiness and apneas severity in patients with obstructive sleep apnea syndrome: a meta-analysis study[J]. Eur Arch Otorhinolaryngol, 2019, 276(12): 3549-3556. doi: 10.1007/s00405-019-05616-0

    [2]

    张风杰, 许志飞. 儿童阻塞性睡眠呼吸暂停综合征对血管内皮细胞功能的影响及其机制[J]. 中华儿科杂志, 2018, 56(1): 75-77. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSF201711001050.htm

    [3]

    Tan J, Huang J, Yang J, et al. Numerical simulation for the upper airway flow characteristics of Chinese patients with OSAHS using CFD models[J]. Eur Arch Otorhinolaryngol, 2013, 270(3): 1035-1043. doi: 10.1007/s00405-013-2363-x

    [4]

    Liu X, Yan W, Liu Y, et al. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway[J]. Comput Math Methods Med, 2016, 2016: 3181654.

    [5]

    Marcus CL. Obstructive sleep apnea syndrome: differences between children and adults[J]. Sleep, 2000, 23 Suppl 4: S140-S141.

    [6]

    唐媛媛, 孙秀珍, 刘迎曦, 等. 腺样体肥大患儿上气道气流流场模型的建立与数值分析[J]. 中国耳鼻咽喉头颈外科, 2012, 19(3): 155-158. https://www.cnki.com.cn/Article/CJFDTOTAL-EBYT201203015.htm

    [7]

    郭宇峰, 单雅敏, 蔡惠坤, 等. 计算机流体力学在模拟下鼻甲手术中的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(4): 257-261. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201704005.htm

    [8]

    Liu Y, Mitchell J, Chen Y, et al. Study of the upper airway of obstructive sleep apnea patient using fluid structure interaction[J]. Respir Physiol Neurobiol, 2018, 249: 54-61. doi: 10.1016/j.resp.2018.01.005

    [9]

    Li C, Jiang J, Dong H, et al. Computational modeling and validation of human nasal airflow under various breathing conditions[J]. J Biomech, 2017, 64: 59-68. doi: 10.1016/j.jbiomech.2017.08.031

    [10]

    Xu C, Sin S, McDonough JM, et al. Computational fluid dynamics modeling of the upper airway of children with obstructive sleep apnea syndrome in steady flow[J]. J Biomech, 2006, 39(11): 2043-2054. doi: 10.1016/j.jbiomech.2005.06.021

    [11]

    庞新举. 鼻腔测压法测量鼻气道阻力及其应用进展[J]. 医学研究生学报, 2012, 25(11): 1196-1200. doi: 10.3969/j.issn.1008-8199.2012.11.019

    [12]

    Slaats M, Vos W, Van Holsbeke C, et al. Predicting the effect of treatment in paediatric OSA by clinical examination and functional respiratory imaging[J]. Pediatr Pulmonol, 2017, 52(6): 799-805. doi: 10.1002/ppul.23684

    [13]

    Mylavarapu G, Murugappan S, Mihaescu M, et al. Validation of computational fluid dynamics methodology used for human upper airway flow simulations[J]. J Biomech, 2009, 42(10): 1553-1559. doi: 10.1016/j.jbiomech.2009.03.035

  • 加载中

(5)

计量
  • 文章访问数:  1296
  • PDF下载数:  555
  • 施引文献:  0
出版历程
收稿日期:  2020-04-02
刊出日期:  2021-02-05

目录