microRNA-107通过靶向调节CACNA2D1抑制喉癌细胞的增殖和侵袭能力

黄朝平, 王轶, 黄石, 等. microRNA-107通过靶向调节CACNA2D1抑制喉癌细胞的增殖和侵袭能力[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(10): 911-918. doi: 10.13201/j.issn.2096-7993.2020.10.011
引用本文: 黄朝平, 王轶, 黄石, 等. microRNA-107通过靶向调节CACNA2D1抑制喉癌细胞的增殖和侵袭能力[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(10): 911-918. doi: 10.13201/j.issn.2096-7993.2020.10.011
HUANG Chaoping, WANG Yi, HUANG Shi, et al. MicroRNA-107 inhibits the proliferation and invasion of laryngeal squamous cell carcinoma cells by targeting CACNA2D1[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(10): 911-918. doi: 10.13201/j.issn.2096-7993.2020.10.011
Citation: HUANG Chaoping, WANG Yi, HUANG Shi, et al. MicroRNA-107 inhibits the proliferation and invasion of laryngeal squamous cell carcinoma cells by targeting CACNA2D1[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(10): 911-918. doi: 10.13201/j.issn.2096-7993.2020.10.011

microRNA-107通过靶向调节CACNA2D1抑制喉癌细胞的增殖和侵袭能力

  • 基金项目:
    成都医学院科研课题(No:CYZ17-33)
详细信息

MicroRNA-107 inhibits the proliferation and invasion of laryngeal squamous cell carcinoma cells by targeting CACNA2D1

More Information
  • 目的 检测microRNA-107(miR-107)和钙通道蛋白基因CACNA2D1在喉癌组织中的表达, 探讨miR-107与CACNA2D1的靶向关系, 分析miR-107对喉癌细胞的增殖、侵袭及克隆形成能力的影响。方法 收集40例喉癌及癌旁正常组织标本, 运用qRT-PCR检测miR-107和CACNA2D1的表达, 使用免疫印迹实验检测2种组织中钙通道蛋白α2δ1的表达; 使用双荧光素酶报告基因检测miR-107对CACNA2D1的调节作用; 在人喉癌细胞TU212及TU686中过表达或敲减miR-107, 检测喉癌细胞增殖、克隆形成及侵袭能力的变化。结果 miR-107在喉癌组织中的表达显著低于癌旁正常组织, 而CACNA2D1的表达则正好相反, 差异有统计学意义(P < 0.05);喉癌组织中的α2δ1表达明显高于癌旁正常组织(P < 0.05);双荧光素酶报告基因实验证实, miR-107通过与CACNA2D1基因mRNA的3'-UTR端2个位点(202-209, 902-908)靶向结合, 从而抑制CACNA2D1的表达及其生物学作用; 细胞实验显示, 过表达miR-107后喉癌细胞增殖、克隆形成及侵袭能力明显下降(P < 0.05), 而敲减miR-107后细胞增殖、克隆形成和侵袭能力明显增强(P < 0.05)。结论 miR-107通过靶向调节CACNA2D1从而抑制喉癌细胞的增殖、克隆形成及侵袭能力。
  • 加载中
  • 图 1  CACNA2D1和miR-107在2种组织中的相对表达水平比较

    图 2  WB检测LSCC患者喉癌组织与癌旁正常组织中α2δ1蛋白相对表达情况

    图 3  qRT-PCR检测结果

    图 4  双荧光素酶报告基因检测

    图 5  miR-107抑制LSCC细胞的增殖率

    图 6  2种LSCC细胞的克隆形成实验结果

    图 7  5组喉癌细胞间侵袭能力比较

    表 1  各基因引物

    基因 正向 反向
    Has-miR-107 5’-TGCGCAGCAGCATTGTACAGGGC-3’ 5’-CCAGTGCAGGGTCCGAGGTATT-3’
    U6 5’-CGCTTCGGCAGCACATATAC-3’ 5’-AAATATGGAACGCTTCACGA-3’
    CACNA2D1 5’-GCATTGGAAGCGGAGAAAGT-3’ 5’-GGAATATGGACTGCTGCGTG-3’
    GAPDH 5’-TCAAGAAGGTGGTGAAGCAGG-3’ 5’-CAAAGGTGGAGGAGTGGGT-3’
    下载: 导出CSV
  • [1]

    Liu Y, Zhao Q, Ding G, et al. Incidence and mortality of laryngeal cancer in China, 2008-2012[J]. Chin J Cancer Res, 2018, 30(3): 299-306. doi: 10.21147/j.issn.1000-9604.2018.03.02

    [2]

    Karachaliou GS, Ayvali F, Collichio FA, et al. Chemotherapy Following PD-1 Inhibitor Blockade in Patients with Unresectable Stage Ⅲ/Stage Ⅳ Metastatic Melanoma: A Single Academic Institution Experience[J]. Oncology, 2020, 98(3): 174-178. doi: 10.1159/000504578

    [3]

    Huang C, Li Y, Zhao W, et al. α2δ1 may be a potential marker for cancer stem cell in laryngeal squamous cell carcinoma[J]. Cancer Biomarkers, 2019, 24(1): 97-107. doi: 10.3233/CBM-181947

    [4]

    Harvey NL. Lymphatic vessels as a stem cell niche[J]. Science, 2019, 366(6470): 1193-1194. doi: 10.1126/science.aaz8780

    [5]

    Zhao W, Wang L, Han H, et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit[J]. Cancer Cell, 2013, 23(4): 541-556. doi: 10.1016/j.ccr.2013.02.025

    [6]

    Zhang Z, Zhao W, Lin X, et al. Voltage-dependent calcium channel α2δ1 subunit is a specific candidate marker for identifying gastric cancer stem cells[J]. Cancer Manag Res, 2019, 23(11): 4707-4718.

    [7]

    Sui X, Geng JH, Li YH, et al. Calcium chanel α2δ1 subunit(CACNA2D1) enhances radioresistance in cancer stem-like cells in non-small cell lung cancer cell lines[J]. Cancer Manag Res, 2018, 26(10): 5009-5018.

    [8]

    Sun C, Shui B, Zhao W, et al. Central role of IP3R2-mediated Ca2+oscillation in self-renewal of liver cancer stem cells elucidated by high-signal ER sensor[J]. Cell Death Dis, 2019, 10(6): 396. doi: 10.1038/s41419-019-1613-2

    [9]

    Khan AQ, Ahmed EI, Elareer NR, et al. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies[J]. Cells, 2019, 8(8): 840. doi: 10.3390/cells8080840

    [10]

    Bahreyni-Toossi MT, Dolat E, Khanbabaei H, et al. microRNAs: Potential glioblastoma radiosensitizer by targeting radiation-related molecular pathways[J]. Mutat Res, 2019, 816-818: 111679. doi: 10.1016/j.mrfmmm.2019.111679

    [11]

    Qu L, Li L, Zheng X, et al. Circulating plasma microRNAs as potential markers to identify EGFR mutation status and to monitor epidermal growth factor receptor-tyrosine kinase inhibitor treatment in patients with advanced non-small cell lung cancer[J]. Oncotarget, 2017, 8(28): 45807-45824. doi: 10.18632/oncotarget.17416

    [12]

    Wang Y, Chen F, Zhao M, et al. MiR-107 suppresses proliferation of hepatoma cells through targeting HMGA2 mRNA 3'UTR[J]. Biochem Biophys Res Commun, 2016, 480(3): 455-460. doi: 10.1016/j.bbrc.2016.10.070

    [13]

    Parvaee P, Sarmadian H, Khansarinejad B, et al. Plasma Level of MicroRNAs, MiR-107, MiR-194 and MiR-210 as Potential Biomarkers for Diagnosis Intestinal-Type Gastric Cancer in Human[J]. Asian Pac J Cancer Prev, 2019, 20(5): 1421-1426. doi: 10.31557/APJCP.2019.20.5.1421

    [14]

    Xiong J, Wang D, Wei A, et al. Deregulated expression of miR-107 inhibits metastasis of PDAC through inhibition PI3K/Akt signaling via caveolin-1 and PTEN[J]. Exp Cell Res, 2017, 361(2): 316-323. doi: 10.1016/j.yexcr.2017.10.033

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1162
  • PDF下载数:  439
  • 施引文献:  0
出版历程
收稿日期:  2019-12-31
刊出日期:  2020-10-05

目录