Research on activity evolution of cerebral cortex and hearing rehabilitation of congenitally deaf children after cochlear implant
-
摘要: 目的: 针对先天性聋患儿群体在人工耳蜗植入(CI)后听觉功能恢复效果存在较大差异的问题,从诱发脑电源活动角度探讨影响患儿CI术后听觉功能恢复效果的内在机制。方法: 首先征集先天性聋患儿23例以及正常对照儿童10例,于术前(0个月)及术后3、6、9和12个月定期采集视觉诱发的事件相关电位(ERP)数据,在CI术后12个月依据听觉功能恢复评估情况,将患儿划分为恢复"良好"与"较差"组。然后采用标准低分辨率层析成像(sLORETA)源定位分析技术,呈现出2组患儿相关大脑皮层的ERP演化情况,同时与正常对照组相比较。结果: 先天性聋患儿耳聋期间存在大脑皮层跨模态功能重组;在CI术后患儿大脑皮层跨模态功能重组逐渐退化,相关脑区活动随之趋于正常,在术后第12个月听觉功能恢复"良好"与"较差"组患者在颞叶和顶叶周边联合皮层活动差异有统计学意义(P<0.05)。结论: 先天性聋患儿大脑皮层跨模态重组的正常化逆转与CI术后患儿听觉功能的恢复情况相关,特别是患儿颞叶和顶叶周边视听联合皮层的异常活动的正常化在一定程度上影响了听觉功能的恢复效果,对指导患者CI术后听力恢复训练和康复评估具有重要意义。Abstract: Objective: There is a significant difference in the hearing rehabilitation between the congenitally deaf children after cochlear implant(CI). The intrinsic mechanism that affects the hearing rehabilitation in patients was discussed from the perspective of evoked EEG source activity.Method: Firstly, we collected the ERP data from 23 patients and 10 control group children during 0, 3, 6, 9 and 12 months after CI. According to the hearing rehabilitation during 12months after CI, the patients were divided into two groups:rehabilitation of "the good" and "the poor". Then we used sLORETA to show the changes in the groups of patients' cerebral cortex and compared with the control group.Result: Cross-modal reorganization of cerebral cortex exists in the congenitally deaf children. The cross-modal reorganization gradually degraded and the activity of the relevant cortex followed by normally after CI. There was a statistically significant difference(P<0.05) in the temporal lobe and the associated cortex around parietal lobe between "the good" and "the poor" groups after 12 months.Conclusion: The normalization of the cross-modal reorganization in patients reflects the hearing rehabilitation after CI, especially the normalization of the activity of the temporal lobe and the associated cortex around parietal lobe, which influences the rehabilitation effect of the auditory function to some extent. This research demonstrated the detection of the mechanism has important significance for the hearing recovery training and evaluation of the hearing rehabilitation after CI.
-
[1] 张晶, 徐学海.先天性聋基因筛查与诊断的临床应用进展[J].西北国防医学杂志, 2013, 1 (2):152-155.
[2] KNUDSEN E I.Sensitive periods in the development of the brain and behavior[J].J Cognitive Neurosci, 2004, 16:1412-1425.
[3] GEERS A E, NICHOLAS J G, MOOG J S.Estimating the influence of cochlear implantation on language development in children[J].Audiol Med, 2009, 5:262-273.
[4] NIPARKO J K, TOBEY E A, THAL D J, et al.Spoken language development in children following cochlear implantation[J].JAMA, 2010, 303:1498-1506.
[5] EDWARDS L, ANDERSON S.The association between visual, nonverbal cognitive abilities and speech, phonological processing, vocabulary and reading outcomes in children with cochlear implants[J].Ear Hearing, 2014, 35:366-374.
[6] HOKING J, PRICE C J.The role of the posterior superior temporal sulcus in audiovisual processing[J].Cerebral Cortex, 2008, 18:2439-2449.
[7] MERABET L B, PASCUAL L A.Neural reorganization following sensory loss:the opportunity of change[J].Nature Rev Neurosci, 2010, 11:44-52.
[8] SANDMANN P, DILLIER N, EICHELE T, et al.Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users[J].Brain, 2012, 135:555-568.
[9] SHARMA A, CAMPBELL J, CARDON G.Developmental and cross-modal plasticity in deafness:Evidence from the P1 and N1 event related potentials in cochlear implanted children[J].Int J Psychophysiol, 2015, 95:135-144.
[10] CONNIE C D, ROBERT J B, JOHN F C, et al.Event-related potentials in clinical research:Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400[J].J Int Federation Clin Neurophysiol, 2009, 120:1883-1908.
[11] DOUCET M E, BERGERON F, LASSONDE M, et al.Cross-modal reorganization and speech perception in cochlear implant users[J].Brain, 2006, 129:3376-3383.
[12] ARCHBOLD S, LUTMAN M E, MARSHALL D H.Categories of auditory performance[J].Ann Otol Rhinol Laryngol Suppl, 1995, 166:312-314.
[13] 关心, 马信山, 谢耀钦.一种基于LORETA收缩有源区的脑电源重构方法[J].自然科学进展, 2002, 12 (11):1197-1201.
[14] SEKIHARA K, SAHANI M, NAGARAJAN S S.Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction[J].Neuroimage, 2005, 25:1056-1067.
[15] HAUTHAL N, THORNE J D, DEBENER S, et al.Source localization of visual evoked potentials in congenitally deaf individuals[J].Brain Topography, 2014, 27:412-424.
[16] PROVERBIO A M, DANIELLO G E, ADORNI R, et al.When a photograph can be heard:vision activates the auditory cortex within 110 ms[J].Sci Rep, 2010, 6043:54-54.
[17] NÄÄTÄNE R, WINKLER I.The concept of auditory stimulus representation in cognitive neuroscience[J].Psychol Bulletin, 1999, 125:826-859.
[18] MITCHELL T V, MASLIN M T.How vision matters for individuals with hearing loss[J].Int J Audiol, 2007, 46:500-511.
计量
- 文章访问数: 124
- PDF下载数: 253
- 施引文献: 0