人工耳蜗植入儿童普通话送气/不送气辅音感知能力研究

李娅妮, 李群, 文简, 等. 人工耳蜗植入儿童普通话送气/不送气辅音感知能力研究[J]. 临床耳鼻咽喉头颈外科杂志, 2025, 39(4): 312-318. doi: 10.13201/j.issn.2096-7993.2025.04.004
引用本文: 李娅妮, 李群, 文简, 等. 人工耳蜗植入儿童普通话送气/不送气辅音感知能力研究[J]. 临床耳鼻咽喉头颈外科杂志, 2025, 39(4): 312-318. doi: 10.13201/j.issn.2096-7993.2025.04.004
LI Yani, LI Qun, WEN Jian, et al. Perception of Mandarin aspirated/unaspirated consonants in children with cochlear implants[J]. J Clin Otorhinolaryngol Head Neck Surg, 2025, 39(4): 312-318. doi: 10.13201/j.issn.2096-7993.2025.04.004
Citation: LI Yani, LI Qun, WEN Jian, et al. Perception of Mandarin aspirated/unaspirated consonants in children with cochlear implants[J]. J Clin Otorhinolaryngol Head Neck Surg, 2025, 39(4): 312-318. doi: 10.13201/j.issn.2096-7993.2025.04.004

人工耳蜗植入儿童普通话送气/不送气辅音感知能力研究

  • 基金项目:
    四川省国际科技创新合作/港澳台科技创新合作项目(No:2022YFH0107);特殊教育语言智能四川省哲学社会科学重点实验室开放课题(No:YYZN-2024-8)
详细信息

Perception of Mandarin aspirated/unaspirated consonants in children with cochlear implants

More Information
  • 目的  研究人工耳蜗(CI)植入儿童在安静及噪声环境下对普通话辅音送气/不送气特征的感知能力。同时探索听觉条件、辅音发声部位、发声方式、年龄、植入年龄、智力等因素对CI儿童获得送气/不送气辅音的影响。 方法  选取2018—2023年植入CI的3~5岁儿童28例作为研究对象(CI组),同龄正常听力(NH)儿童88例作为对照(NH组)。分别测试2组儿童在安静及噪声条件下对送气/不送气辅音的识别能力,以及语音分辨能力、语音产出能力和非言语智力。探究组别(CI组和NH组)、听觉条件、辅音特征对儿童辅音识别的效应,并分析影响CI儿童获得送气/不送气辅音的因素。 结果  ① CI儿童的送气/不送气辅音感知能力落后于同龄NH儿童,2组比较差异有统计学意义(χ2=14.16,P<0.01),且识别能力还受辅音声学特征的影响(P<0.01);②CI儿童的送气/不送气辅音感知能力受噪声影响明显(P<0.01),且在噪声下的识别正确率还受到辅音发声方式的影响(P<0.05);③CI儿童年龄越小,其辅音感知能力越好(β=-0.223,P=0.012)。 结论  CI儿童对辅音送气/不送气特征的感知能力仍需提高。然而,早期CI植入对其言语感知能力的发展,特别是对细微语音特征的感知能力,具有一定优势。
  • 加载中
  • 图 1  普通话送气/不送气辅音感知能力测试示例

    图 2  CI儿童与NH儿童送气/不送气辅音识别正确率

    图 3  不同听觉条件下(安静/噪声)CI儿童及其同龄NH儿童辅音识别正确率

    图 4  CI组患儿的年龄、CI使用时长和CI植入年龄与送气/不送气辅音识别正确率的散点图

    表 1  2组受试儿童的基本信息 Min~Max,X±S

    项目 NH组 CI组
    年龄/岁 3.33~5.99(4.61±0.82) 3.18~5.96(4.54±0.88)
    听力损失诊断年龄/岁 - 0.00~3.08(1.13±1.21)
    植入年龄/岁 - 0.21~4.26(2.31±1.09)
    CI使用时长/年 - 0.65~4.93(2.47±0.93)
    语音产出正确率/% 55.00~100.00(91.56±17.16) 13.00~86.00(50.50±8.16)
    智力得分 64.00~125.00(106.52±14.01) 73.00~146.00(97.00±19.39)
    下载: 导出CSV

    表 2  Logistic回归结果

    组别 相关因素 β SE Wald χ2 P OR(95%CI)
    CI组 年龄 -0.167 0.18 0.95 0.343 0.846(0.621,1.139)
    CI植入年龄 -0.172 0.08 12.36 <0.050 0.842(0.727,0.970)
    CI使用时长 0.050 0.09 0.30 0.578 1.051(0.876,1.252)
    语音产出 <0.001 0.01 0.00 0.985 1.000(0.992,1.008)
    智力水平 -0.003 0.01 0.57 0.449 0.997(0.989,1.005)
    NH组 年龄 0.503 0.06 8.43 <0.010 1.655(1.543,1.774)
    语音产出 0.016 0.01 4.11 <0.050 1.016(1.004,1.028)
    智力水平 0.008 <0.01 5.37 <0.010 1.008(1.003,1.014)
    下载: 导出CSV
  • [1]

    Khwaileh FA, Flipsen P Jr, Hammouri HM, et al. Acoustic characteristics of Arabic pharyngealized obstruents in children with cochlear implants[J]. J Acoust Soc Am, 2019, 146(2): 893-908.

    [2]

    Meng Y, Chen F, Feng Y, et al. Age-Related Differences of Mandarin Tone and Consonant Aspiration Perception in Babble Noise[J]. J Speech Lang Hear Res, 2022, 65(9): 3438-3451.

    [3]

    Ramteke PB, Supanekar S, Koolagudi SG. Classification of aspirated and unaspirated sounds in speech using excitation and signal level information[J]. Comput Speech Lang, 2020, 62(6): 101057.

    [4]

    Lisker L, Abramson AS. A Cross-Language Study of Voicing in Initial Stops: Acoustical Measurements[J]. WORD, 1964, 20(3): 384-422.

    [5]

    刘亚丽, 齐娜, 陈静, 等. 普通话辅音嗓音起始时间VOT的声学统计分析[J]. 中国传媒大学学报(自然科学版), 2023, 30(3): 15-23.

    [6]

    Feng Y, Peng G. Development of categorical speech perception in Mandarin-speaking children and adolescents[J]. Child Dev, 2023, 94(1): 28-43. doi: 10.1111/cdev.13837

    [7]

    World Health Organization. World report on hearing[R/OL]. Geneva: WHO, 2021.

    [8]

    李葆嘉, 王彤. 幼儿语言的成长: 常用词汇语义系统建构[M]. 北京: 科学出版社, 2021: 43-210.

    [9]

    张显达, 郝燕, 赵冬梅, 等. 儿童语言发育词汇评估量表的信效度研究[J]. 中国听力语言康复科学杂志, 2024, 22(1): 23-26.

    [10]

    McGhee R, Ehrler D. Primary Test of Nonverbal Intelligence Technical Manual[M]. Austin: PRO-ED, 2008: 1-75

    [11]

    Zheng Y, Soli SD, Meng Z, et al. Assessment of Mandarin-speaking pediatric cochlear implant recipients with the Mandarin Early Speech Perception(MESP)test[J]. Int J Pediatr Otorhinolaryngol, 2010, 74(8): 920-925. doi: 10.1016/j.ijporl.2010.05.014

    [12]

    Peng ZE, Hess C, Saffran JR, et al. Assessing Fine-Grained Speech Discrimination in Young Children With Bilateral Cochlear Implants[J]. Otol Neurotol, 2019, 40(3): e191-e197. doi: 10.1097/MAO.0000000000002115

    [13]

    Grimm R, Pettinato M, Gillis S, et al. Simulating speech processing with cochlear implants: How does channel interaction affect learning in neural networks?[J]. PLoS One, 2019, 14(2): e0212134. doi: 10.1371/journal.pone.0212134

    [14]

    Hedrick M, Thornton KET, Yeager K, et al. The Use of Static and Dynamic Cues for Vowel Identification by Children Wearing Hearing Aids or Cochlear Implants[J]. Ear Hear, 2020, 41(1): 72-81. doi: 10.1097/AUD.0000000000000735

    [15]

    Varnet L, Langlet C, Lorenzi C, et al. High-Frequency Sensorineural Hearing Loss Alters Cue-Weighting Strategies for Discriminating Stop Consonants in Noise[J]. Trends Hear, 2019, 23: 2331216519886707. doi: 10.1177/2331216519886707

    [16]

    McClaskey CM. Neural hyperactivity and altered envelope encoding in the central auditory system: Changes with advanced age and hearing loss[J]. Hear Res, 2024, 442: 108945.

    [17]

    Wong LLN, Zhu S, Chen Y, et al. Discrimination of consonants in quiet and in noise in Mandarin-speaking children with normal hearing[J]. PLoS One, 2023, 18(3): e0283198.

    [18]

    McFayden TC, Baskin P, Stephens JDW, et al. Cortical Auditory Event-Related Potentials and Categorical Perception of Voice Onset Time in Children With an Auditory Neuropathy Spectrum Disorder[J]. Front Hum Neurosci, 2020, 14: 184.

    [19]

    Peng ZE, Easwar V. Development of amplitude modulation, voice onset time, and consonant identification in noise and reverberation[J]. J Acoust Soc Am, 2024, 155(2): 1071-1085.

    [20]

    Sharma SD, Cushing SL, Papsin BC, et al. Hearing and speech benefits of cochlear implantation in children: A review of the literature[J]. Int J Pediatr Otorhinolaryngol, 2020, 133: 109984.

    [21]

    Naik AN, Varadarajan VV, Malhotra PS. Early pediatric Cochlear implantation: An update[J]. Laryngoscope Investig Otolaryngol, 2021, 6(3): 512-521.

    [22]

    Yuan D, Ng IH, Feng G, et al. The Extent of Hearing Input Affects the Plasticity of the Auditory Cortex in Children With Hearing Loss: A Preliminary Study[J]. Am J Audiol, 2023, 32(2): 379-390.

    [23]

    Persic D, Thomas ME, Pelekanos V, et al. Regulation of auditory plasticity during critical periods and following hearing loss[J]. Hear Res, 2020, 397: 107976.

    [24]

    Franchella S, Concheri S, Di Pasquale Fiasca VM, et al. Bilateral simultaneous cochlear implants in children: Best timing of surgery and long-term auditory outcomes[J]. Am J Otolaryngol, 2024, 45(2): 104124.

    [25]

    Pardo JS, Remez RE. On the Relation between Speech Perception and Speech Production[M]//The Handbook of Speech Perception, Hoboken, NJ: Wiley-Blackwell, 2021: 632-655.

    [26]

    An KM, Hasegawa C, Hirosawa T, et al. Brain responses to human-voice processing predict child development and intelligence[J]. Hum Brain Mapp, 2020, 41(9): 2292-2301.

    [27]

    Wang Y, Seidl A, Cristia A. Infant speech perception and cognitive skills as predictors of later vocabulary[J]. Infant Behav Dev, 2021, 62: 101524.

    [28]

    Kulasingham JP, Joshi NH, Rezaeizadeh M, et al. Cortical Processing of Arithmetic and Simple Sentences in an Auditory Attention Task[J]. J Neurosci, 2021, 41(38): 8023-8039.

  • 加载中
计量
  • 文章访问数:  183
  • 施引文献:  0
出版历程
收稿日期:  2024-06-03
刊出日期:  2025-04-03

返回顶部

目录