臭氧在变应性鼻炎发病中的作用

张雪琰, 孙娜, 章如新. 臭氧在变应性鼻炎发病中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(8): 769-772. doi: 10.13201/j.issn.2096-7993.2024.08.019
引用本文: 张雪琰, 孙娜, 章如新. 臭氧在变应性鼻炎发病中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(8): 769-772. doi: 10.13201/j.issn.2096-7993.2024.08.019
ZHANG Xueyan, SUN Na, ZHANG Ruxin. The role of ozone in the pathogenesis of allergic rhinitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(8): 769-772. doi: 10.13201/j.issn.2096-7993.2024.08.019
Citation: ZHANG Xueyan, SUN Na, ZHANG Ruxin. The role of ozone in the pathogenesis of allergic rhinitis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(8): 769-772. doi: 10.13201/j.issn.2096-7993.2024.08.019

臭氧在变应性鼻炎发病中的作用

  • 基金项目:
    国家自然科学基金项目(No:81974140)
详细信息

The role of ozone in the pathogenesis of allergic rhinitis

More Information
  • 变应性鼻炎(AR)是由环境因素和遗传因素及多种炎性因子共同参与的鼻部变态反应性疾病。其中,臭氧作为大气污染参与AR发病的病理过程及作用机制尚不十分清楚。本文就臭氧对AR流行病学的影响、病理学影响及其可能的作用机制进行综述,为AR的防治提供新的思路。
  • 加载中
  • [1]

    中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国变应性鼻炎诊断和治疗指南(2022年, 修订版)[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLA202404022.htm

    [2]

    章如新. P物质、基因调控及PM2.5在变应性鼻炎发病机制中的作用[J]. 中华耳鼻咽喉头颈外科杂志, 2018, 4(10): 725-729.

    [3]

    章如新. 变应性鼻炎基因治疗研究与展望[J]. 中国眼耳鼻喉科杂志, 2012, 12(6): 347-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YRBH201206004.htm

    [4]

    Wang JY, Lu MX, An Z, et al. Associations between air pollution and outpatient visits for allergic rhinitis in Xinxiang, China[J]. Environ Sci Pollut Res Int, 2020, 27(19): 23565-23574. doi: 10.1007/s11356-020-08709-0

    [5]

    Luo X, Hong HY, Lu YT, et al. Impact of air pollution and meteorological factors on incidence of allergic rhinitis: a low-latitude multi-city study in China[J]. Allergy, 2023, 78(6): 1656-1659. doi: 10.1111/all.15469

    [6]

    Bédard A, Sofiev M, Arnavielhe S, et al. Interactions between air pollution and pollen season for rhinitis using mobile technology: a MASK-POLLAR study[J]. J Allergy Clin Immunol Pract, 2020, 8(3): 1063-1073. e4. doi: 10.1016/j.jaip.2019.11.022

    [7]

    Cabrera M, Garzón García B, Moreno Grau S, et al. Association between seasonal allergic rhinitis and air pollution, meteorological factors, and grass pollen counts in Madrid(1996 and 2009)[J]. J Investig Allergol Clin Immunol, 2019, 29(5): 371-377. doi: 10.18176/jiaci.0368

    [8]

    Li Y, Jiang Y, Li S, et al. Pre-and postnatal risk factors in relation to allergic rhinitis in school-aged children in China[J]. PLoS One, 2015, 10(2): e0114022. doi: 10.1371/journal.pone.0114022

    [9]

    Zhou PE, Qian ZM, McMillin SE, et al. Relationships between long-term ozone exposure and allergic rhinitis and bronchitic symptoms in Chinese children[J]. Toxics, 2021, 9(9): 221. doi: 10.3390/toxics9090221

    [10]

    Hajat S, Haines A, Atkinson RW, et al. Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom[J]. Am J Epidemiol, 2001, 153(7): 704-714. doi: 10.1093/aje/153.7.704

    [11]

    Kuiper IN, Markevych I, Accordini S, et al. Associations of preconception exposure to air pollution and greenness with offspring asthma and hay fever[J]. Int J Environ Res Public Health, 2020, 17(16): 5828. doi: 10.3390/ijerph17165828

    [12]

    Wagner JG, Harkema JR, Jiang Q, et al. Gamma-tocopherol attenuates ozone-induced exacerbation of allergic rhinosinusitis in rats[J]. Toxicol Pathol, 2009, 37(4): 481-491. doi: 10.1177/0192623309335630

    [13]

    Bao AH, Liang L, Li F, et al. Effects of acute ozone exposure on lung peak allergic inflammation of mice[J]. Front Biosci, 2013, 18(3): 838-851. doi: 10.2741/4147

    [14]

    Bao Y, Zhu X. Role of chemokines and inflammatory cells in respiratory allergy[J]. J Asthma Allergy, 2022, 15: 1805-1822. doi: 10.2147/JAA.S395490

    [15]

    孙娜, 黄昱, 章如新, 等. 臭氧对变应性鼻炎鼻黏膜NF-κB p65核蛋白表达及炎性因子的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 237-244, 253. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYU202203033.htm

    [16]

    Wang JC, Guo ZQ, Zhang RX, et al. Effects of N-acetylcysteine on oxidative stress and inflammation reactions in a rat model of allergic rhinitis after PM2.5 exposure[J]. Biochem Biophys Res Commun, 2020, 533(3): 275-281. doi: 10.1016/j.bbrc.2020.09.022

    [17]

    Sun N, Huang Y, Zhang XY, et al. Involvements of Nrf2 and oxidative stress in the ozone-elicited exacerbation in an allergic rhinitis model[J]. Ecotoxicol Environ Saf, 2023, 255: 114822. doi: 10.1016/j.ecoenv.2023.114822

    [18]

    Sun N, Niu Y, Zhang RX, et al. Ozone inhalation induces exacerbation of eosinophilic airway inflammation and Th2-skew immune response in a rat model of AR[J]. Biomedecine Pharmacother, 2021, 137: 111261. doi: 10.1016/j.biopha.2021.111261

    [19]

    Zhao F, Durner J, Winkler JB, et al. Pollen of common ragweed(Ambrosia artemisiifolia L. ): Illumina-based de novo sequencing and differential transcript expression upon elevated NO2/O3[J]. Environ Pollut, 2017, 224: 503-514. doi: 10.1016/j.envpol.2017.02.032

    [20]

    Hong Q, Zhou SM, Zhao H, et al. Allergenicity of recombinant Humulus japonicus pollen allergen 1 after combined exposure to ozone and nitrogen dioxide[J]. Environ Pollut, 2018, 234: 707-715. doi: 10.1016/j.envpol.2017.11.078

    [21]

    Hollingsworth JW, Free ME, Li ZW, et al. Ozone activates pulmonary dendritic cells and promotes allergic sensitization through a Toll-like receptor 4-dependent mechanism[J]. J Allergy Clin Immunol, 2010, 125(5): 1167-1170. doi: 10.1016/j.jaci.2010.03.001

    [22]

    Cho HY, Park S, Miller L, et al. Role for mucin-5AC in upper and lower airway pathogenesis in mice[J]. Toxicol Pathol, 2021, 49(5): 1077-1099. doi: 10.1177/01926233211004433

    [23]

    Li ZW, Tighe RM, Feng FF, et al. Genes of innate immunity and the biological response to inhaled ozone[J]. J Biochem Mol Toxicol, 2013, 27(1): 3-16. doi: 10.1002/jbt.21453

    [24]

    Pederson WP, Cyphert-Daly JM, Tighe RM, et al. Genetic variation in surfactant protein-A2 alters responses to ozone[J]. PLoS One, 2021, 16(2): e0247504. doi: 10.1371/journal.pone.0247504

    [25]

    Kleeberger SR, Reddy S, Zhang LY, et al. Genetic susceptibility to ozone-induced lung hyperpermeability: role of toll-like receptor 4[J]. Am J Respir Cell Mol Biol, 2000, 22(5): 620-627. doi: 10.1165/ajrcmb.22.5.3912

    [26]

    Yu SQ, Zhang RX, Liu GJ, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis[J]. Am J Rhinol Allergy, 2011, 25(6): e242-e246.

    [27]

    Wei Y, Han B, Dai W, et al. Exposure to ozone impacted Th1/Th2 imbalance of CD4+ T cells and apoptosis of ASMCs underlying asthmatic progression by activating lncRNA PVT1-miR-15a-5p/miR-29c-3p signaling[J]. Aging(Albany NY), 2020, 12(24): 25229-25255.

    [28]

    Bind MC, Rubin DB, Cardenas A, et al. Heterogeneous ozone effects on the DNA methylome of bronchial cells observed in a crossover study[J]. Sci Rep, 2020, 10(1): 15739.

    [29]

    Fry RC, Rager JE, Bauer R, et al. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(12): L1129-L1137.

  • 加载中
计量
  • 文章访问数:  288
  • 施引文献:  0
出版历程
收稿日期:  2023-04-27
刊出日期:  2024-08-03

返回顶部

目录