糖皮质激素抵抗在耳鼻咽喉疾病中的研究进展

李亚秀, 佘万东. 糖皮质激素抵抗在耳鼻咽喉疾病中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(7): 661-665. doi: 10.13201/j.issn.2096-7993.2024.07.020
引用本文: 李亚秀, 佘万东. 糖皮质激素抵抗在耳鼻咽喉疾病中的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(7): 661-665. doi: 10.13201/j.issn.2096-7993.2024.07.020
LI Yaxiu, SHE Wandong. Advances in glucocorticoid resistance in otorhinolaryngological diseases[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(7): 661-665. doi: 10.13201/j.issn.2096-7993.2024.07.020
Citation: LI Yaxiu, SHE Wandong. Advances in glucocorticoid resistance in otorhinolaryngological diseases[J]. J Clin Otorhinolaryngol Head Neck Surg, 2024, 38(7): 661-665. doi: 10.13201/j.issn.2096-7993.2024.07.020

糖皮质激素抵抗在耳鼻咽喉疾病中的研究进展

  • 基金项目:
    国家自然科学基金(No:81670931);南京市医学重点科技发展项目(No:ZKX-21012);江苏省自然科学基金(No:BK20231122);南京鼓楼医院临床研究专项资金面上项目:(No:2022-LCYJ-NMS-01)
详细信息

Advances in glucocorticoid resistance in otorhinolaryngological diseases

More Information
  • 糖皮质激素(glucocorticoids,GC)临床上广泛应用于自身免疫性内耳病、突发性聋、梅尼埃病及鼻窦炎等耳鼻咽喉疾病的治疗,部分患者存在GC抵抗现象,但导致GC抵抗因素机制尚不清楚,本文从GC受体因素和非GC受体因素两方面阐述了GC抵抗的相关机制,并综述其在耳鼻咽喉科疾病的最新研究进展,旨在未来寻找GC抵抗生物标志物,提高GC疗效提出新策略。
  • 加载中
  • [1]

    Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464.

    [2]

    Chen K, Yu ZJ, Yang J, et al. Expression of cysteinyl leukotriene receptor GPR17 in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Asian Pac J Allergy Immunol, 2018, 36(2): 93-100.

    [3]

    Bayar Muluk N, Cingi C, Scadding GK, et al. Chronic rhinosinusitis-could phenotyping or endotyping aid therapy?[J]. Am J Rhinol Allergy, 2019, 33(1): 83-93. doi: 10.1177/1945892418807590

    [4]

    Nakagawa T, Kumakawa K, Usami S, et al. A randomized controlled clinical trial of topical insulin-like growth factor-1 therapy for sudden deafness refractory to systemic corticosteroid treatment[J]. BMC Med, 2014, 12: 219. doi: 10.1186/s12916-014-0219-x

    [5]

    Lo CY, Wang CH, Wang CW, et al. Increased interleukin-17 and glucocorticoid receptor-β expression in interstitial lung diseases and corticosteroid insensitivity[J]. Front Immunol, 2022, 13: 905727. doi: 10.3389/fimmu.2022.905727

    [6]

    Tang BL, Han J, Wang F, et al. GR-α and GR-β mRNA levels in peripheral blood mononuclear cells of acute myelitis patients can assist in the identification of glucocorticoid sensitivity and are correlated with glucocorticoid therapeutic effect[J]. Ann Hum Genet, 2022, 86(5): 268-277. doi: 10.1111/ahg.12472

    [7]

    Liang Y, Song MM, Liu SY, et al. Relationship between expression of glucocorticoid receptor isoforms and glucocorticoid resistance in immune thrombocytopenia[J]. Hematology, 2016, 21(7): 440-446. doi: 10.1080/10245332.2015.1102371

    [8]

    Sun XL, Fang MY, Guan YC, et al. Changes of glucocorticoid receptor isoforms expression in acute lymphoblastic leukemia correlate with glucocorticoid resistance[J]. Pharmazie, 2015, 70(5): 316-321.

    [9]

    Zhang XL, Chen JX, Gao ZW, et al. Response of glucocorticoid receptor alpha and histone deacetylase 2 to glucocorticoid treatment predicts the prognosis of sudden sensorineural hearing loss[J]. Clin Exp Otorhinolaryngol, 2019, 12(4): 367-375. doi: 10.21053/ceo.2018.01298

    [10]

    Chen XB, Zhang Q, Yang CP, et al. GRβ regulates glucocorticoid resistance in sudden sensorineural hearing loss[J]. Curr Pharm Biotechnol, 2021, 22(9): 1206-1215. doi: 10.2174/1389201021666201008163534

    [11]

    Xue JM, An YF, Suo LM, et al. Livin in synergy with Ras induces and sustains corticosteroid resistance in the airway mucosa[J]. Int J Biol Sci, 2021, 17(8): 2089-2098. doi: 10.7150/ijbs.58427

    [12]

    Nguyen QT, Kim D, Iamsawat S, et al. Cutting edge: steroid responsiveness in Foxp3+ regulatory T cells determines steroid sensitivity during allergic airway inflammation in mice[J]. J Immunol, 2021, 207(3): 765-770. doi: 10.4049/jimmunol.2100251

    [13]

    Jiang Y, Liu B, Bao X, et al. TNF-α regulates the glucocorticoid receptor alpha expression in human nasal epithelial cells via p65-NF-κb and p38-MAPK signaling pathways[J]. Iran J Biotechnol, 2023, 21(1): e3117.

    [14]

    Wang Z, Li P, Zhang Q, et al. Interleukin-1β regulates the expression of glucocorticoid receptor isoforms in nasal polyps in vitro via p38 MAPK and JNK signal transduction pathways[J]. J Inflamm(Lond), 2015, 12(1): 3. doi: 10.1186/s12950-014-0046-z

    [15]

    Li Y, Chang LH, Huang WQ, et al. IL-17A mediates pyroptosis via the ERK pathway and contributes to steroid resistance in CRSwNP[J]. J Allergy Clin Immunol, 2022, 150(2): 337-351. doi: 10.1016/j.jaci.2022.02.031

    [16]

    Fernández-Bertolín L, Mullol J, Fuentes-Prado M, et al. Effect of lipopolysaccharide on glucocorticoid receptor function in control nasal mucosa fibroblasts and in fibroblasts from patients with chronic rhinosinusitis with nasal polyps and asthma[J]. PLoS One, 2015, 10(5): e0125443. doi: 10.1371/journal.pone.0125443

    [17]

    Kobayashi Y, Kanda A, Yun Y, et al. Reduced local response to corticosteroids in eosinophilic chronic rhinosinusitis with asthma[J]. Biomolecules, 2020, 10(2): 326. doi: 10.3390/biom10020326

    [18]

    Xia L, Liu JJ, Sun YY, et al. Rosiglitazone improves glucocorticoid resistance in a sudden sensorineural hearing loss by promoting MAP kinase phosphatase-1 expression[J]. Mediators Inflamm, 2019, 2019: 7915730.

    [19]

    Qian L, Xu DH, Xue FS, et al. Interleukin-35 sensitizes monocytes from patients with asthma to glucocorticoid therapy by regulating p38 MAPK[J]. Exp Ther Med, 2020, 19(5): 3247-3258.

    [20]

    Monteiro LLS, Franco OL, Alencar SA, et al. Deciphering the structural basis for glucocorticoid resistance caused by missense mutations in the ligand binding domain of glucocorticoid receptor[J]. J Mol Graph Model, 2019, 92: 216-226. doi: 10.1016/j.jmgm.2019.07.020

    [21]

    Chien CY, Tai SY, Li KH, et al. Glucocorticoid receptor(NR3C1) genetic polymorphisms and the outcomes of sudden sensorineural hearing loss[J]. Le J D'oto Rhino Laryngol De Chir Cervico Faciale, 2023, 52(1): 13.

    [22]

    Wu C, Fang F, Zhan XJ, et al. The association between glucocorticoid receptor(NR3C1) gene polymorphism and difficult-to-treat rhinosinusitis[J]. Eur Arch Otorhinolaryngol, 2022, 279(8): 3981-3987. doi: 10.1007/s00405-021-07228-z

    [23]

    刘双喜, 车娜, 金玲, 等. 慢性鼻窦炎患者FCER2基因多态性与鼻用糖皮质激素疗效的相关性研究[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(11): 856-863. doi: 10.13201/j.issn.2096-7993.2023.11.002

    [24]

    Liang X, Jin P, Zhan CC, et al. Glucocorticoid-induced transcript 1(GLCCI1) SNP rs37937 is associated with the risk of developing allergic rhinitis and the response to intranasal corticosteroids in a Chinese Han population[J]. Am J Rhinol Allergy, 2023, 37(6): 751-757. doi: 10.1177/19458924231193156

    [25]

    Hou J, She WD, Du XP, et al. Histone deacetylase 2 in sudden sensorineural hearing loss patients in response to intratympanic methylprednisolone perfusion[J]. Otolaryngol Head Neck Surg, 2016, 154(1): 164-170. doi: 10.1177/0194599815606911

    [26]

    Xie L, Zhou Q, Chen X, et al. Elucidation of the Hdac2/Sp1/miR-204-5p/Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/in vitro models of acute hearing loss[J]. Mol Ther Nucleic Acids, 2021, 23: 1093-1109. doi: 10.1016/j.omtn.2021.01.017

    [27]

    Zhou QQ, Dai YH, Du XP, et al. Aminophylline restores glucocorticoid sensitivity in a guinea pig model of sudden sensorineural hearing loss induced by lipopolysaccharide[J]. Sci Rep, 2017, 7(1): 2736. doi: 10.1038/s41598-017-02956-x

    [28]

    Tao FL, Zhou YY, Wang MW, et al. Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway[J]. Korean J Physiol Pharmacol, 2022, 26(2): 95-111. doi: 10.4196/kjpp.2022.26.2.95

    [29]

    Qi H, Gao ZW, Hou J, et al. Nuclear factor erythroid 2-related factor 2-histone deacetylase 2 pathway in the pathogenesis of refractory sudden sensorineural hearing loss and glucocorticoid resistance[J]. ORL J Otorhinolaryngol Relat Spec, 2021, 83(4): 227-233. doi: 10.1159/000515205

    [30]

    Zheng Y, Gao N, Zhang WX, et al. Melatonin alleviates the oxygen-glucose deprivation/reperfusion-induced pyroptosis of HEI-OC1 cells and cochlear hair cells via MT-1, 2/Nrf2(NFE2 L2)/ROS/NLRP3 pathway[J]. Mol Neurobiol, 2023, 60(2): 629-642. doi: 10.1007/s12035-022-03077-x

    [31]

    Yazdani N, Kakavand Hamidi A, Ghazavi H, et al. Association between macrophage migration inhibitory factor gene variation and response to glucocorticoid treatment in sudden sensorineural hearing loss[J]. Audiol Neurootol, 2015, 20(6): 376-382. doi: 10.1159/000438741

    [32]

    Zhu WY, Jin X, Ma YC, et al. Correlations of MIF polymorphism and serum levels of MIF with glucocorticoid sensitivity of sudden sensorineural hearing loss[J]. J Int Med Res, 2020, 48(4): 300060519893870.

    [33]

    Zhu WY, She WD, Gao ZW, et al. Inhibition of macrophage migration inhibitory factor alleviates LPS-induced inflammation response of HEI-OC1 cells via suppressing NF-κB signaling[J]. Cytokine, 2022, 150: 155776. doi: 10.1016/j.cyto.2021.155776

    [34]

    Yao J, Leng L, Fu WL, et al. ICBP90 regulates MIF expression, glucocorticoid sensitivity, and apoptosis at the MIF immune susceptibility locus[J]. Arthritis Rheumatol, 2021, 73(10): 1931-1942. doi: 10.1002/art.41753

    [35]

    Kariya S, Okano M, Maeda Y, et al. Role of macrophage migration inhibitory factor in age-related hearing loss[J]. Neuroscience, 2014, 279: 132-138. doi: 10.1016/j.neuroscience.2014.08.042

    [36]

    Zhu WY, Jin X, Ma YC, et al. MIF protects against oxygen-glucose deprivation-induced ototoxicity in HEI-OC1 cochlear cells by enhancement of Akt-Nrf2-HO-1 pathway[J]. Biochem Biophys Res Commun, 2018, 503(2): 665-670. doi: 10.1016/j.bbrc.2018.06.058

    [37]

    Mao YJ, Chen HH, Wang B, et al. Increased expression of MUC5AC and MUC5B promoting bacterial biofilm formation in chronic rhinosinusitis patients[J]. Auris Nasus Larynx, 2015, 42(4): 294-298. doi: 10.1016/j.anl.2014.12.004

    [38]

    钟烁, 苗伟. 慢性鼻-鼻窦炎伴鼻息肉患者鼻黏膜组织HIF-1α、MUC5AC表达与糖皮质激素抵抗的关系[J]. 新疆医科大学学报, 2023, 46(4): 441-446. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYY202304003.htm

    [39]

    Jiang LJ, Zhou M, Deng J, et al. The ratio of 11β-hydroxysteroid dehydrogenase 1/11β-hydroxysteroid dehydrogenase 2 predicts glucocorticoid response in nasal polyps[J]. Eur Arch Otorhinolaryngol, 2019, 276(1): 131-137. doi: 10.1007/s00405-018-5201-3

    [40]

    Lu HG, Lin XS, Yao DM, et al. Increased serum amyloid A in nasal polyps is associated with systemic corticosteroid insensitivity in patients with chronic rhinosinusitis with nasal polyps: a pilot study[J]. Eur Arch Otorhinolaryngol, 2018, 275(2): 401-408. doi: 10.1007/s00405-017-4809-z

    [41]

    Taha MS, Nocera A, Workman A, et al. P-glycoprotein inhibition with verapamil overcomes mometasone resistance in Chronic Sinusitis with Nasal Polyps[J]. Rhinology, 2021, 59(2): 205-211.

  • 加载中
计量
  • 文章访问数:  1484
  • PDF下载数:  1093
  • 施引文献:  0
出版历程
收稿日期:  2023-11-09
修回日期:  2024-04-16
刊出日期:  2024-07-03

目录