甲状腺乳头状癌多基因检测与临床特征分析

史苑, 钱凯, 郭凯, 等. 甲状腺乳头状癌多基因检测与临床特征分析[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(5): 375-379. doi: 10.13201/j.issn.2096-7993.2023.05.011
引用本文: 史苑, 钱凯, 郭凯, 等. 甲状腺乳头状癌多基因检测与临床特征分析[J]. 临床耳鼻咽喉头颈外科杂志, 2023, 37(5): 375-379. doi: 10.13201/j.issn.2096-7993.2023.05.011
SHI Yuan, QIAN Kai, GUO Kai, et al. Clinical significance of multigene assay in papillary thyroid carcinoma[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(5): 375-379. doi: 10.13201/j.issn.2096-7993.2023.05.011
Citation: SHI Yuan, QIAN Kai, GUO Kai, et al. Clinical significance of multigene assay in papillary thyroid carcinoma[J]. J Clin Otorhinolaryngol Head Neck Surg, 2023, 37(5): 375-379. doi: 10.13201/j.issn.2096-7993.2023.05.011

甲状腺乳头状癌多基因检测与临床特征分析

  • 基金项目:
    国家自然科学基金项目(No:81972496)
详细信息

Clinical significance of multigene assay in papillary thyroid carcinoma

More Information
  • 目的 分析甲状腺乳头状癌(papillary thyroid carcinoma,PTC)多基因检测结果与临床特征的关系。方法 纳入2021年8月-2022年5月在上海交通大学医学院附属仁济医院接受甲状腺切除手术的患者,使用8基因试剂盒检测肿瘤组织,分析基因突变与病例特征的相关性。结果 161例患者中BRAF V600E、RET/PTC1和TERT启动子突变比例分别为82.0%、6.8%和4.3%,BRAF V600E突变常见于男性患者(P=0.023),TERT启动子突变肿瘤直径大(P=0.019)、多灶性比例高(P=0.050)、淋巴结转移多(P=0.031)。在89例完成术前穿刺BRAF V600E检测的患者中,术前穿刺检测与术后试剂盒检测结果具有较强一致性(Cohen κ=0.694,95%CI:0.482~0.906,P < 0.01)。观察获得苏木精-伊红染色切片的80例患者,基因突变类型以BRAF V600E为主,经典或滤泡型分布较多,TERT启动子突变和RET/PTC1融合则分别以高细胞/柱状/靴钉型和弥漫硬化型为主要病理亚型。单因素方差分析显示不同病理亚型间的患病年龄(P=0.029)和肿瘤直径(P < 0.01)存在差异。结论 多基因试剂盒作为一种简便易行的PTC临床检测手段,能够补充识别BRAF V600E点突变以外的重要基因事件,为术后患者提供更多预后信息及随访提示。
  • 加载中
  • 表 1  基因突变及未突变组临床资料比较

    BRAF
    阴性
    (n=29)
    BRAF
    阳性
    (n=132)
    P TERTp
    阴性
    (n=154)
    TERTp
    阳性
    (n=7)
    P RET/PTC1
    阴性
    (n=144)
    RET/PTC1
    阳性
    (n=10)
    P
    一般资料
      女/男/例 26/3 91/41 0.023 111/43 6/1 0.675 102/42 9/1 0.346
      年龄/岁 41.0±14.2 42.6±12.8 0.561 42.1±13.0 46.7±12.5 0.361 42.4±12.9 38.5±15.6 0.367
      家族史/例 0 12 0.126 12 0 1.000 12 0 1.000
      恶性肿瘤病史/例 0 5 0.586 5 0 1.000 5 0 1.000
    肿瘤体积
      肿瘤最大径/cm 1.0±0.7 1.1±0.7 0.482 1.1±0.7 1.7±1.0 0.019 1.1±0.7 0.9±0.5 0.459
      微小癌(最大径≤1 cm)/例(%) 19(65.5) 77(58.3) 0.475 94(61.0) 2(28.6) 0.187 88(61.1) 7(70.0) 0.824
    病理特征/例(%)
      多灶 6(20.7) 50(37.9) 0.078 51(33.1) 5(71.4) 0.050 49(34.0) 2(20.0) 0.342
      腺体外侵犯 4(13.8) 18(13.7) 1.000 20(13.1) 2(28.6) 0.247 20(13.9) 0(0.0) 0.437
    淋巴结分期/例(%)
      N0 10(34.5) 64(48.5) 0.188 73(47.4) 1(14.3) 0.031 70(48.6) 3(30.0) 0.198
      N1a 7(24.1) 35(26.5) 41(26.6) 1(14.3) 39(27.1) 2(20.0)
      N1b 12(41.4) 33(25.0) 40(26.0) 5(71.4) 35(24.3) 5(50.0)
    合并桥本甲状腺炎/例(%) 23(79.3) 44(33.3) < 0.001 67(43.5) 0(0.0) 0.042 57(39.6) 10(100.0) < 0.001
    下载: 导出CSV

    表 2  不同病理亚型间临床资料比较

    滤泡或经典型 高细胞/柱状/靴钉型 弥漫硬化型 F P
    突变事件/例
      BRAF (n=67) 39 16 12 - -
      TERTp (n=3) 1 2 0 - -
      RAS (n=1) 0 0 1 - -
      RET/PTC1 (n=5) 2 0 3 - -
      无(n=8) 7 1 0 - -
    临床特征
      年龄/岁 43.9±13.7 39.6±12.8 33.9±8.1 3.707 0.029
      肿瘤最大径/cm 1.0±0.6 1.8±0.7 1.6±0.5 14.485 < 0.001
      多灶/例(%) 20(41.7) 5(29.4) 6(40.0) - 0.668
      腺体外侵犯/例(%) 9(18.8) 3(17.6) 3(20.0) - 0.986
      颈侧区淋巴结转移/例(%) 10(20.8) 7(41.2) 9(60.0) - 0.013
    下载: 导出CSV
  • [1]

    Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-9. doi: 10.1016/j.jncc.2022.02.002

    [2]

    Singh A, Ham J, Po JW, et al. The Genomic Landscape of Thyroid Cancer Tumourigenesis and Implications for Immunotherapy[J]. Cells, 2021, 10(5): 1082. doi: 10.3390/cells10051082

    [3]

    Romei C, Elisei R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer[J]. Int J Mol Sci, 2021, 22(4): 1726. doi: 10.3390/ijms22041726

    [4]

    Li X, Li E, Du J, et al. BRAF mutation analysis by ARMS-PCR refines thyroid nodule management[J]. Clin Endocrinol (Oxf), 2019, 91(6): 834-841. doi: 10.1111/cen.14079

    [5]

    罗定远, 廖健伟. 甲状腺癌RET基因检测与临床应用专家共识(2021版)[J]. 中华普通外科学文献(电子版), 2022, 16(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHPD202201018.htm

    [6]

    Bose S, Sacks W, Walts AE. Update on Molecular Testing for Cytologically Indeterminate Thyroid Nodules[J]. Adv Anat Pathol, 2019, 26(2): 114-123. doi: 10.1097/PAP.0000000000000211

    [7]

    Nikiforova MN, Mercurio S, Wald AI, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules[J]. Cancer, 2018, 124(8): 1682-1690. doi: 10.1002/cncr.31245

    [8]

    Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy[J]. Clin Cancer Res, 2022, 28(21): 4618-4628. doi: 10.1158/1078-0432.CCR-21-2138

    [9]

    Abi-Raad R, Prasad ML, Zheng J, et al. Prognostic Assessment of BRAF Mutation in Preoperative Thyroid Fine-Needle Aspiration Specimens[J]. Am J Clin Pathol, 2021, 156(1): 100-108. doi: 10.1093/ajcp/aqaa213

    [10]

    Tao Y, Wang F, Shen X, et al. BRAF V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer[J]. J Clin Endocrinol Metab, 2021, 106(11): 3228-3238. doi: 10.1210/clinem/dgab286

    [11]

    Panebianco F, Nikitski AV, Nikiforova MN, et al. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer[J]. Cancer Med, 2019, 8(13): 5831-5839. doi: 10.1002/cam4.2467

    [12]

    Krasner JR, Alyouha N, Pusztaszeri M, et al. Molecular mutations as a possible factor for determining extent of thyroid surgery[J]. J Otolaryngol Head Neck Surg, 2019, 48(1): 51. doi: 10.1186/s40463-019-0372-5

    [13]

    Chen B, Shi Y, Xu Y, et al. The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: A systematic review and meta-analysis[J]. Clin Endocrinol(Oxf), 2021, 94(5): 731-742. doi: 10.1111/cen.14316

    [14]

    Xu J, Ding K, Mu L, et al. Hashimoto's Thyroiditis: A "Double-Edged Sword" in Thyroid Carcinoma[J]. Front Endocrinol(Lausanne), 2022, 13: 801925. doi: 10.3389/fendo.2022.801925

    [15]

    Salvatore D, Santoro M, Schlumberger M. The importance of the RET gene in thyroid cancer and therapeutic implications[J]. Nat Rev Endocrinol, 2021, 17(5): 296-306. doi: 10.1038/s41574-021-00470-9

    [16]

    Krishnan A, Berthelet J, Renaud E, et al. Proteogenomics analysis unveils a TFG-RET gene fusion and druggable targets in papillary thyroid carcinomas[J]. Nat Commun, 2020, 11(1): 2056. doi: 10.1038/s41467-020-15955-w

    [17]

    Ferrari SM, Fallahi P, Elia G, et al. Thyroid autoimmune disorders and cancer[J]. Semin Cancer Biol, 2020, 64: 135-146. doi: 10.1016/j.semcancer.2019.05.019

    [18]

    Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms[J]. Endocr Pathol, 2022, 33(1): 27-63. doi: 10.1007/s12022-022-09707-3

    [19]

    Coca-Pelaz A, Shah JP, Hernandez-Prera JC, et al. Papillary Thyroid Cancer-Aggressive Variants and Impact on Management: A Narrative Review[J]. Adv Ther, 2020, 37(7): 3112-3128. doi: 10.1007/s12325-020-01391-1

    [20]

    Nath MC, Erickson LA. Aggressive Variants of Papillary Thyroid Carcinoma: Hobnail, Tall Cell, Columnar, and Solid[J]. Adv Anat Pathol, 2018, 25(3): 172-179. doi: 10.1097/PAP.0000000000000184

    [21]

    Ho AS, Luu M, Barrios L, et al. Incidence and Mortality Risk Spectrum Across Aggressive Variants of Papillary Thyroid Carcinoma[J]. JAMA Oncol, 2020, 6(5): 706-713. doi: 10.1001/jamaoncol.2019.6851

  • 加载中
计量
  • 文章访问数:  1373
  • PDF下载数:  498
  • 施引文献:  0
出版历程
收稿日期:  2023-01-12
刊出日期:  2023-05-03

目录