Application and development of voice analysis and endoscopic technology combined with artificial intelligence in the diagnosis and treatment of throat disease
-
摘要: 耳鼻喉科咽喉病变诊疗中,将嗓音分析或内镜技术与人工智能结合的应用和发展迅猛。本文通过文献复习,回顾了嗓音分析或内镜技术与人工智能结合的历史和原理,对其应用和发展现状进行了总结,概括其优势在于强大的学习和判读能力、惊人的速度和耐性以及稳定的复制和拓展性。目前制约其发展的关键是机器学习过程中的不确定性、小样本引起的误差和伦理上的哲学思考。未来的发展方向应该是耳鼻咽喉头颈外科医生在掌握过硬的专业知识基础上,学习流行病学、经典统计学领域相关知识,加强与机器学习开发人员之间的交流合作,最终使先进的科学技术能在临床真正地使用,最大程度造福广大患者。Abstract: In the diagnosis and treatment of throat disease, the application and development of combining voice analysis or endoscopic technology with artificial intelligence has developed rapidly. This paper reviews the history and principles of the combination of voice analysis or endoscopic technology with artificial intelligence, summarizes its status of application and development, and sums up its advantages that lie in the strong learning and interpretation ability, amazing speed and tolerance, and stable replication and expansion. The key to restrict its development is the uncertainty in the process of machine learning, the error caused by small samples, and the ethical philosophical thinking. Future development direction should be that the surgeons in otolaryngology head and neck department on the basis of excellent professional knowledge, learn related knowledge of epidemiology, classic statistics, strengthen the exchanges and cooperation with machine learning developers. Eventually, advanced science and technology can be truly used in clinical practice to maximize the benefit of the majority of patients.
-
Key words:
- throat disease /
- voice analysis /
- endoscopic technology /
- artificial intelligence
-
[1] Freeman DT. Computer recognition of brain stem auditory evoked potential wave V by a neural network[J]. Proc Annu Symp Comput Appl Med Care, 1991: 305-309.
[2] Schönweiler R, Hess M, Wübbelt P, et al. Novel approach to acoustical voice analysis using artificial neural networks[J]. J Assoc Res Otolaryngol, 2000, 1(4): 270-282.
[3] Whipple ME, Mendez E, Farwell DG, et al. A genomic predictor of oral squamous cell carcinoma[J]. Laryngoscope, 2004, 114(8): 1346-1354. doi: 10.1097/00005537-200408000-00006
[4] Godino-Llorente JI, Gómez-Vilda P, Blanco-Velasco M. Dimensionality reduction of a pathological voice quality assessment system based on Gaussian mixture models and short-term cepstral parameters[J]. IEEE Trans Biomed Eng, 2006, 53(10): 1943-1953. doi: 10.1109/TBME.2006.871883
[5] Ritchings RT, McGillion M, Moore CJ. Pathological voice quality assessment using artificial neural networks[J]. Med Eng Phys, 2002, 24(7/8): 561-564.
[6] Saeedi NE, Almasganj F, Torabinejad F. Support vector wavelet adaptation for pathological voice assessment[J]. Comput Biol Med, 2011, 41(9): 822-828. doi: 10.1016/j.compbiomed.2011.06.019
[7] Hemmerling D, Skalski A, Gajda J. Voice data mining for laryngeal pathology assessment[J]. Comput Biol Med, 2016, 69: 270-276. doi: 10.1016/j.compbiomed.2015.07.026
[8] Chen L, Chen J. Deep Neural Network for Automatic Classification of Pathological Voice Signals[J]. J Voice, 2022, 36(2): 288.
[9] Hu HC, Chang SY, Wang CH, et al. Deep Learning Application for Vocal Fold Disease Prediction Through Voice Recognition: Preliminary Development Study[J]. J Med Internet Res, 2021, 23(6): e25247. doi: 10.2196/25247
[10] 庞宇峰, 黄娟, 徐蓓峥, 等. 病态嗓音的定量分析及人工神经网络识别[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(2): 100-102. http://www.cnki.com.cn/article/cjfdtotal-lceh201702006.htm
[11] Fang SH, Tsao Y, Hsiao MJ, et al. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach[J]. J Voice, 2019, 33(5): 634-641. doi: 10.1016/j.jvoice.2018.02.003
[12] Huang CC, Leu YS, Kuo CF, et al. Automatic recognizing of vocal fold disorders from glottis images[J]. Proc Inst Mech Eng H, 2014, 228(9): 952-961. doi: 10.1177/0954411914551851
[13] Unger J, Lohscheller J, Reiter M, et al. A noninvasive procedure for early-stage discrimination of malignant and precancerous vocal fold lesions based on laryngeal dynamics analysis[J]. Cancer Res, 2015, 75(1): 31-39.
[14] Xu J, Wang J, Bian X, et al. Deep Learning for nasopharyngeal Carcinoma Identification Using Both White Light and Narrow-Band Imaging Endoscopy[J]. Laryngoscope, 2021.
[15] Mascharak S, Baird BJ, Holsinger FC. Detecting oropharyngeal carcinoma using multispectral, narrow-band imaging and machine learning[J]. Laryngoscope, 2018, 128(11): 2514-2520.
[16] Song B, Sunny S, Uthoff RD, et al. Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning[J]. Biomed Opt Express, 2018, 9(11): 5318-5329. doi: 10.1364/BOE.9.005318
[17] Moccia S, Vanone GO, Momi E, et al. Learning-based classification of informative laryngoscopic frames[J]. Comput MethodsPrograms Biomed, 2018, 158: 21-30.
[18] Moccia S, De Momi E, Guarnaschelli M, et al. Confident texture-based laryngeal tissue classification for early stage diagnosis support[J]. J Med Imaging(Bellingham), 2017, 4(3): 034502.
[19] Xiong H, Lin P, Yu JG, et al. Computer-aided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images[J]. EBioMedicine, 2019, 48: 92-99. doi: 10.1016/j.ebiom.2019.08.075
[20] Kuo CJ, Kao CH, Dlamini S, et al. Laryngopharyngeal reflux image quantization and analysis of its severity[J]. Sci Rep, 2020, 10(1): 10975. doi: 10.1038/s41598-020-67587-1
[21] Dunham ME, Kong KA, McWhorter AJ, et al. Optical Biopsy: Automated Classification of Airway Endoscopic Findings Using a Convolutional Neural Network[J]. Laryngoscope, 2020.
[22] Ren J, Jing X, Wang J, et al. Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique[J]. Laryngoscope, 2020, 130(11): E686-E693.
[23] 胡蓉, 钟琦, 徐文, 等. 基于深度卷积神经网络的人工智能在喉鳞状细胞癌窄带成像辅助诊断中的应用[J]. 中华耳鼻咽喉头颈外科杂志, 2021, 56(5): 454-458.
[24] Yao P, Usman M, Chen YH, et al. Applications of Artificial Intelligence to Office Laryngoscopy: A Scoping Review[J]. Laryngoscope, 2021.
[25] Chowdhury NI, Smith TL, Chandra RK, et al. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks[J]. Int Forum Allergy Rhinol, 2019, 9(1): 46-52.
[26] Mullainathan S, Obermeyer Z. Does Machine Learning Automate Moral Hazard and Error?[J]. Am Econ Rev, 2017, 107(5): 476-480.
[27] Cabitza F, Rasoini R, Gensini GF. Unintended Consequences of Machine Learning in Medicine[J]. JAMA, 2017, 318(6): 517-518.
[28] Sataloff RT. Data Scientists: They know what we don't know that we don't know about Big Data[J]. Ear Nose Throat J, 2016, 95(8): 302-305.
[29] Risoud M, Bonne NX, Vincent C. Big Data: Coming soon to ENT[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2016, 133(3): 157.
计量
- 文章访问数: 1339
- PDF下载数: 651
- 施引文献: 0