Application research and development of objective examination of olfactory function
-
摘要: 嗅觉是人类最原始的5种基本感觉功能之一,在日常生活中起着非常重要的作用。嗅觉的检查方法繁多且不统一、缺乏标准化,而且其客观评估的相关研究起步较晚。随着嗅觉传导通路的进一步破译,嗅觉客观检查的技术水平有了很大提升并且在相关领域的应用研究上也有了重大进展,如:嗅通路MRI及fMRI成像、嗅觉诱发电位、脑电地形图对于各种嗅觉障碍及神经退变早期诊断的优势和应用研究,以及基于仿生嗅觉传感技术的相关研究。本综述主要介绍几种常用的嗅觉客观检查的特点及研究进展,为更准确地评估嗅觉功能提供参考。Abstract: The sense of smell is one of the five most primitive human sensory functions, and it plays a very important role in our daily lives. Despite numerous methods for evaluating olfactory function, there is still a lack of standardization of olfactory tests and the results are often inconsistent. Furthermore, the related research on objective evaluation started relatively late. Along with the deciphering of the olfactory pathway, the technical level of olfactory objective inspection has been greatly improved and significant progress has also been made in terms of clinical application, such as: olfactory pathway MRI and fMRI imaging, OERPs, BEAM for various olfactory disorders and early diagnosis of neurodegenerative disorders, as well as related research based on bionic olfactory sensing technology. This article mainly introduces the recent research progress of several commonly used objective olfactory tests and provides reference for more accurate evaluation of olfactory function.
-
Key words:
- olfactory /
- objective examination
-
[1] Moein ST, Hashemian SM, Mansourafshar B, et al. Smell dysfunction: a biomarker for COVID-19[J]. Int Forum Allergy Rhinol, 2020, 10(8): 944-950. doi: 10.1002/alr.22587
[2] Mehraeen E, Behnezhad F, Salehi MA, et al. Olfactory and gustatory dysfunctions due to the coronavirus disease(COVID-19): a review of current evidence[J]. Eur Arch Otorhinolaryngol, 2021, 278(2): 307-312. doi: 10.1007/s00405-020-06120-6
[3] Yang J, Pinto JM. The Epidemiology of Olfactory Disorders[J]. Curr Otorhinolaryngol Rep, 2016, 4(2): 130-141. doi: 10.1007/s40136-016-0120-6
[4] Whitcroft KL, Hummel T. Olfactory Dysfunction in COVID-19: Diagnosis and Management[J]. JAMA, 2020, 323(24): 2512-2514. doi: 10.1001/jama.2020.8391
[5] Noh Y, Choi JE, Lee KE, et al. A Comparison of Olfactory and Sinonasal Outcomes in Endoscopic Pituitary Surgery Performed by a Single Neurosurgeon or a Collaborative Team of Surgeons[J]. Clin Exp Otorhinolaryngol, 2020, 13(3): 261-267. doi: 10.21053/ceo.2019.01466
[6] Langstaff L, Pradhan N, Clark A, et al. Validation of the olfactory disorders questionnaire for English-speaking patients with olfactory disorders[J]. Clin Otolaryngol, 2019, 44(5): 715-728. doi: 10.1111/coa.13351
[7] 金晓峰, 王剑, 李永金, 等. 简体中文版本嗅觉障碍生活质量量表的信度和效度分析[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(18): 1423-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201618001.htm
[8] Zendehbad AS, Noroozian M, Shakiba A, et al. Validation of Iranian Smell Identification Test for screening of mild cognitive impairment and Alzheimer's disease[J]. Appl Neuropsychol Adult, 2022, 29(1): 77-82. doi: 10.1080/23279095.2019.1710508
[9] Oleszkiewicz A, Schriever VA, Croy I, et al. Updated Sniffin' Sticks normative data based on an extended sample of 9139 subjects[J]. Eur Arch Otorhinolaryngol, 2019, 276(3): 719-728. doi: 10.1007/s00405-018-5248-1
[10] Aniteli MB, Marson F, Cunha FR, et al. Correlation and agreement of olfactory perception assessed by the Connecticut Chemosensory Clinical Research Center olfactory test and the Brief-Smell Identification Test[J]. Braz J Otorhinolaryngol, 2020.
[11] Kuwata F, Kikuchi M, Ishikawa M, et al. Long-term olfactory function outcomes after pituitary surgery by endoscopic endonasal transsphenoidal approach[J]. Auris Nasus Larynx, 2020, 47(2): 227-232. doi: 10.1016/j.anl.2019.07.002
[12] Feng G, Zhuang Y, Yao F, et al. Development of the Chinese Smell Identification Test[J]. Chem Senses, 2019, 44(3): 189-195. doi: 10.1093/chemse/bjz006
[13] Othieno F, Schlosser RJ, Storck KA, et al. Retronasal olfaction in chronic rhinosinusitis[J]. Laryngoscope, 2018, 128(11): 2437-2442. doi: 10.1002/lary.27187
[14] Schlosser RJ, Smith TL, Mace JC, et al. The Olfactory Cleft Endoscopy Scale: a multi-institutional validation study in chronic rhinosinusitis[J]. Rhinology, 2021, 59(2): 181-190.
[15] Kohli P, Schlosser RJ, Storck K, et al. Olfactory cleft computed tomography analysis and olfaction in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2016, 30(6): 402-406. doi: 10.2500/ajra.2016.30.4365
[16] Poletti SC, Murta G, Hähner A, et al. Olfactory cleft evaluation: a predictor for olfactory function in smell-impaired patients?[J]. Eur Arch Otorhinolaryngol, 2018, 275(5): 1129-1137. doi: 10.1007/s00405-018-4913-8
[17] Vandenhende-Szymanski C, Hochet B, Chevalier D, et al. Olfactory cleft opacity and CT score are predictive factors of smell recovery after surgery in nasal polyposis[J]. Rhinology, 2015, 53(1): 29-34. doi: 10.4193/Rhino14.160
[18] Loftus C, Schlosser RJ, Smith TL, et al. Olfactory cleft and sinus opacification differentially impact olfaction in chronic rhinosinusitis[J]. Laryngoscope, 2020, 130(10): 2311-2318. doi: 10.1002/lary.28332
[19] Doǧan A, Bayar Muluk N, Şahin H. Olfactory Bulb Volume and Olfactory Sulcus Depth in Patients With OSA: An MRI Evaluation[J]. Ear Nose Throat J, 2020, 99(7): 442-447. doi: 10.1177/0145561319881571
[20] Yao L, Yi X, Pinto JM, et al. Olfactory cortex and Olfactory bulb volume alterations in patients with post-infectious Olfactory loss[J]. Brain Imaging Behav, 2018, 12(5): 1355-1362. doi: 10.1007/s11682-017-9807-7
[21] Yildirim D, Altundag A, Tekcan Sanli DE, et al. A new perspective on imaging of olfactory dysfunction: Does size matter?[J]. Eur J Radiol, 2020, 132: 109290. doi: 10.1016/j.ejrad.2020.109290
[22] Kandemirli SG, Altundag A, Yildirim D, et al. Olfactory Bulb MRI and Paranasal Sinus CT Findings in Persistent COVID-19 Anosmia[J]. Acad Radiol, 2021, 28(1): 28-35. doi: 10.1016/j.acra.2020.10.006
[23] Han P, Winkler N, Hummel C, et al. Alterations of Brain Gray Matter Density and Olfactory Bulb Volume in Patients with Olfactory Loss after Traumatic Brain Injury[J]. J Neurotrauma, 2018, 35(22): 2632-2640. doi: 10.1089/neu.2017.5393
[24] Yu HL, Chen ZJ, Zhao JW, et al. Olfactory Impairment and Hippocampal Volume in a Chinese MCI Clinical Sample[J]. Alzheimer Dis Assoc Disord, 2019, 33(2): 124-128. doi: 10.1097/WAD.0000000000000305
[25] Chiaravalloti A, Pagani M, Micarelli A, et al. Cortical activity during olfactory stimulation in multiple chemical sensitivity: a(18) F-FDG PET/CT study[J]. Eur J Nucl Med Mol Imaging, 2015, 42(5): 733-40. doi: 10.1007/s00259-014-2969-2
[26] Gao X, Wu D, Li X, et al. Altered glucose metabolism of the olfactory-related cortices in anosmia patients with traumatic brain injury[J]. Eur Arch Otorhinolaryngol, 2021, 278(12): 4813-4821. doi: 10.1007/s00405-021-06754-0
[27] Lu J, Wang X, Qing Z, et al. Detectability and reproducibility of the olfactory fMRI signal under the influence of magnetic susceptibility artifacts in the primary olfactory cortex[J]. Neuroimage, 2018, 178: 613-621. doi: 10.1016/j.neuroimage.2018.06.008
[28] Han P, Zang Y, Akshita J, et al. Magnetic Resonance Imaging of Human Olfactory Dysfunction[J]. Brain Topogr, 2019, 32(6): 987-997. doi: 10.1007/s10548-019-00729-5
[29] Hosseini SF, Kamrava SK, Asadi S, et al. A multimodal MR-compatible olfactometer with real-time controlling capability[J]. J Med Eng Technol, 2020, 44(6): 317-323. doi: 10.1080/03091902.2020.1791987
[30] Adam-Darque A, Grouiller F, Vasung L, et al. fMRI-based Neuronal Response to New Odorants in the Newborn Brain[J]. Cereb Cortex, 2018, 28(8): 2901-2907. doi: 10.1093/cercor/bhx167
[31] Müschenich FS, Sichtermann T, Di Francesco ME, et al. Some like it, some do not: behavioral responses and central processing of olfactory-trigeminal mixture perception[J]. Brain Struct Funct, 2021, 226(1): 247-261. doi: 10.1007/s00429-020-02178-4
[32] Yunpeng Z, Han P, Joshi A, et al. Individual variability of olfactory fMRI in normosmia and olfactory dysfunction[J]. Eur Arch Otorhinolaryngol, 2021, 278(2): 379-387. doi: 10.1007/s00405-020-06233-y
[33] Pellegrino R, Farruggia MC, Small DM, et al. Post-traumatic olfactory loss and brain response beyond olfactory cortex[J]. Sci Rep, 2021, 11(1): 4043. doi: 10.1038/s41598-021-83621-2
[34] Gudziol H, Guntinas-Lichius O. Electrophysiologic assessment of olfactory and gustatory function[J]. Handb Clin Neurol, 2019, 164: 247-262.
[35] Walliczek-Dworschak U, Poncelet J, Baum D, et al. The Presentation of Olfactory-Trigeminal Mixed Stimuli Increases the Response to Subsequent Olfactory Stimuli[J]. J Agric Food Chem, 2018, 66(10): 2312-2318. doi: 10.1021/acs.jafc.6b04342
[36] Tang BB, Wei X, Guo G, et al. The effect of odor exposure time on olfactory cognitive processing: An ERP study[J]. J Integr Neurosci, 2019, 18(1): 87-93.
[37] Schriever VA, Han P, Weise S, et al. Time frequency analysis of olfactory induced EEG-power change[J]. PLoS One, 2017, 12(10): e0185596. doi: 10.1371/journal.pone.0185596
[38] Hörberg T, Larsson M, Ekström I, et al. Olfactory Influences on Visual Categorization: Behavioral and ERP Evidence[J]. Cereb Cortex, 2020, 30(7): 4220-4237. doi: 10.1093/cercor/bhaa050
[39] Invitto S, Piraino G, Ciccarese V, et al. Potential Role of OERP as Early Marker of Mild Cognitive Impairment[J]. Front Aging Neurosci, 2018, 10: 272. doi: 10.3389/fnagi.2018.00272
[40] Iannilli E, Stephan L, Hummel T, et al. Olfactory impairment in Parkinson's disease is a consequence of central nervous system decline[J]. J Neurol, 2017, 264(6): 1236-1246. doi: 10.1007/s00415-017-8521-0
[41] Tremblay C, Emrich R, Cavazzana A, et al. Specific intranasal and central trigeminal electrophysiological responses in Parkinson's disease[J]. J Neurol, 2019, 266(12): 2942-2951. doi: 10.1007/s00415-019-09517-4
[42] Guo Y, Wu D, Sun Z, et al. Prognostic value of olfactory evoked potentials in patients with post-infectious olfactory dysfunction[J]. Eur Arch Otorhinolaryngol, 2021, 278(10): 3839-3846. doi: 10.1007/s00405-021-06683-y
[43] 张丽川, 孙敬武, 李希平, 等. 内镜鼻窦手术对慢性鼻-鼻窦炎伴鼻息肉患者嗅觉功能转归的影响[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(8): 713-717. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201908008.htm
[44] Limphaibool N, Iwanowski P, Kozubski W, et al. Subjective and Objective Assessments of Post-traumatic Olfactory Dysfunction[J]. Front Neurol, 2020, 11: 970. doi: 10.3389/fneur.2020.00970
[45] Versace V, Langthaler PB, Sebastianelli L, et al. Impaired cholinergic transmission in patients with Parkinson's disease and olfactory dysfunction[J]. J Neurol Sci, 2017, 377: 55-61. doi: 10.1016/j.jns.2017.03.049
[46] Bonanno L, Marino S, De Salvo S, et al. Role of diffusion tensor imaging in the diagnosis and management of post-traumatic anosmia[J]. Brain Inj, 2017, 31(13-14): 1964-1968. doi: 10.1080/02699052.2017.1346293
[47] Abbasi NI, Bose R, Bezerianos A, et al. EEG-Based Classification of Olfactory Response to Pleasant Stimuli[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 5160-5163.
[48] Abbasi NI, Bezerianos A, Hamano J, et al. Evoked Brain Responses in Odor Stimuli Evaluation-an EEG Event Related Potential Study[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 2861-2864.
[49] Cavazzana A, Poletti SC, Guducu C, et al. Electro-olfactogram Responses Before and After Aversive Olfactory Conditioning in Humans[J]. Neuroscience, 2018, 373: 199-206. doi: 10.1016/j.neuroscience.2018.01.025
[50] 庄柳静, 刘梦雪, 姜楠, 等. 仿生嗅觉感知技术及其在嗅觉障碍疾病筛查中的研究进展[J]. 科学通报, 2021, 66(15): 1886-1899. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202115010.htm
[51] Zhuang L, Zhang B, Qin Z, et al. Nasal Respiration is Necessary for the Generation of γ Oscillation in the Olfactory Bulb[J]. Neuroscience, 2019, 398: 218-230. doi: 10.1016/j.neuroscience.2018.12.011
计量
- 文章访问数: 1945
- PDF下载数: 1691
- 施引文献: 0