Evaluation of hearing and speech rehabilitation after cochlear implantation in children with Waardenburg syndrome
-
摘要: 目的 通过比较Waardenburg综合征(WS)患儿与中国人群常见致聋基因( SLC26A4 、GJB2 )致病患儿的人工耳蜗植入术(CI)术后听觉与言语康复效果、WS患儿双侧CI与单侧CI的听觉与言语康复效果,为WS患儿临床植入人工耳蜗提供参考。方法 追踪回访2017—2019年经昆明市儿童医院确诊为重度或极重度感音神经性聋且明确基因突变类型的CI患儿72例,其中WS组24例,对照组( SLC26A4 致聋组和GJB2 致聋组)各24例。所有患儿于开机后12个月进行听觉与言语能力评估。结果 WS组与 SLC26A4 致聋组和GJB2 致聋组的助听听阈、各项言语识别能力评估正确识别率、IT-MAIS/MAIS得分率、CAP得分、SIR得分差异均无统计学意义(P>0.05);WS组双侧CI患儿的IT-MAIS/MAIS得分率、SIR得分、自然环境声响识别、韵母识别、声调识别、单音节词识别、双音节词识别、短句识别的正确识别率显著高于单侧CI患儿,差异有统计学意义(P < 0.05);WS组双侧CI患儿和单侧CI患儿的CAP得分、声母识别和三音节词识别的正确识别率之间的差异无统计学意义(P>0.05)。结论 WS患儿与中国人群常见致聋基因( SLC26A4 、GJB2 )致病患儿的CI术后听觉与言语康复效果相当,对于WS合并重度或极重度感音神经性聋的患儿,临床可行CI以改善其听觉及言语能力;WS患儿双侧CI较单侧CI术后在诸多听觉及言语能力方面有优势,故具备条件者,应鼓励双侧植入。
-
关键词:
- Waardenburg综合征 /
- 耳蜗植入术 /
- 听觉与言语康复
Abstract: Objective By comparing the hearing and speech rehabilitation effects of cochlear implantation (CI) in children with Waardenburg syndrome (WS) and children with common deafness genes ( SLC26A4 , GJB2 ) in the Chinese population, and the hearing and speech rehabilitation effects of bilateral CI and unilateral CI in children with WS, to provide a reference for clinical CIin children with WS.Methods Follow up and return visit 72 pedestrian cochlear implant children with severe and above sensorineural hearing loss and clear gene mutation type diagnosed by Kunming Children's Hospital from 2017 to 2019, including 24 cases in the WS group, 24 cases in the control group ( SLC26A4 deafness group and GJB2 deafness group). All enrolled children were evaluated for auditory and speech ability 12 months after startup.Results The hearing aid threshold, the correct recognition rate of speech recognition ability evaluation, IT-MAIS / MAIS score rate, CAP score, SIR score, there was no significant difference(P>0.05). The correct recognition rates of IT-MAIS / MAIS score, SIR score, natural environment sound recognition, vowel recognition, tone recognition, monosyllabic word recognition, disyllabic word recognition and short sentence recognition in children with WS bilateral CI were significantly higher than those in children with WS unilateral CI (P < 0.05). There was no significant difference in CAP score, initial recognition and correct recognition rate of trisyllabic words between children with WS bilateral CI and children with WS unilateral CI (P>0.05).Conclusion Common deafness genes in children with WS and Chinese population ( SLC26A4 , GJB2 ) the effect of cochlear implantation on hearing and speech rehabilitation of sick children is equivalent. For children with severe and above sensorineural hearing loss associated with this syndrome, CI can be used clinically to improve their hearing and speech ability. WS bilateral CI has advantages in some hearing and speech abilities compared with unilateral CI, so those whomeet the conditions should be encouraged bilateral implantation. -
表 1 3组言语识别能力评估正确识别率比较
%,X±S 组别 例数 自然环境声响识别 韵母识别 声母识别 声调识别 单音节词识别 双音节词识别 三音节词识别 短句识别 WS组 19 69.47± 9.26 69.58± 8.07 69.26± 7.31 65.96± 8.13 72.66± 6.88 75.54± 10.47 70.53± 10.52 72.11± 10.97 SLC26A4致聋组 19 67.11± 8.71 66.95± 8.60 66.63± 8.59 69.72± 10.34 70.68± 10.94 71.40± 11.83 73.26± 9.98 73.68± 10.91 GJB2致聋组 19 73.16± 10.45 71.68± 8.95 70.95± 9.03 69.68± 10.93 69.92± 7.76 71.83± 11.59 76.42± 8.73 69.47± 9.56 表 2 3组患儿IT-MAIS/MAIS得分率及CAP、SIR得分比较
X±S 组别 例数 IT-MAIS/MAIS/% CAP/分 SIR/分 WS组 24 80.73±3.50 4.92±0.58 3.71±0.69 SLC26A4致聋组 24 79.48±2.76 5.00±0.68 3.79±0.41 GJB2致聋组 24 79.17±2.51 4.63±0.65 3.75±0.44 表 3 WS组双侧CI和单侧CI的IT-MAIS/MAIS得分率及CAP、SIR得分比较
X±S 侧别 例数 IT-MAIS/MAIS/% CAP/分 SIR/分 双侧 12 82.50±2.82 5.08±0.51 4.00±0.60 单侧 12 78.96±3.28 4.75±0.62 3.42±0.67 P值 0.010 0.167 0.035 表 4 WS组双侧CI和单侧CI言语识别能力评估正确识别率比较
%,X±S 侧别 例数 自然环境声响识别 韵母识别 声母识别 声调识别 单音节词识别 双音节词识别 三音节词识别 短句识别 双侧 10 74.00± 8.10 73.20± 5.98 72.00± 6.53 69.67± 7.78 75.82± 3.55 80.67± 4.39 74.40± 10.53 77.00± 8.88 单侧 9 64.44± 8.08 65.56± 8.47 66.22± 7.24 61.85± 6.69 69.15± 8.12 69.85± 12.47 66.22± 9.19 66.67± 10.90 P值 0.020 0.035 0.085 0.032 0.030 0.020 0.091 0.036 -
[1] Gowda VK, Srinivas S, Srinivasan VM. Waardenburg Syndrome Type Ⅰ[J]. Indian J Pediatr, 2020, 87(3): 244. doi: 10.1007/s12098-019-03170-5
[2] Ma J, Lin K, Jiang HC, et al. A novel mutation of the PAX3 gene in a Chinese family with Waardenburg syndrome type Ⅰ[J]. Mol Genet Genomic Med, 2019, 7(7): e00798.
[3] Haj Kassem L, Ahmado MF, Sheikh Alganameh M. A rare case of seven siblings with Waardenburg syndrome: a case report[J]. J Med Case Rep, 2018, 12(1): 192. doi: 10.1186/s13256-018-1704-1
[4] Ma J, Zhang TS, Lin K, et al. Waardenburg syndrome type Ⅱ in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene[J]. Int J Pediatr Otorhinolaryngol, 2016, 85(6): 56-61.
[5] Koyama H, Kashio A, Sakata A, et al. The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome[J]. Biomed Res Int, 2016, 2016: 2854736.
[6] Deka RC, Sikka K, Chaturvedy G, et al. Cochlear implantation in Waardenburg syndrome: The Indian scenario. [J]. Acta Otolaryngol, 2010, 130(10): 1097-1100. doi: 10.3109/00016481003713640
[7] Polanski JF, Kochen AP, de Oliveira CA. Hearing and speech performance after cochlear implantation in children with Waardenburg syndrome[J]. Codas, 2020, 32(6): e20180295. doi: 10.1590/2317-1782/20202018295
[8] de Sousa Andrade SM, Monteiro AR, Martins JH, et al. Cochlear implant rehabilitation outcomes in Waardenburg syndrome children[J]. Int J Pediatr Otorhinolaryngol, 2012, 76(9): 1375-1378. doi: 10.1016/j.ijporl.2012.06.010
[9] 李霞, 赵声波, 毕先云, 等. PAX3基因新突变致Ⅰ型Waardenburg综合征家系基因型与表型特征分析[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(7): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202107010.htm
[10] 孙喜斌. 听力障碍儿童语言能力评估标准及方法[M]. 北京: 三辰影库音像出版社, 2009: 1-12.
[11] Robbins AM, Rneshaw JJ, Berry SW. Evaluating meaningful auditory integration in pro foundly hearing-impaired children[J]. Am J Otol, 1991, 12: 144-150.
[12] Archbold S, Lutman ME, Marshall DH. Categories of Auditory Performance[J]. Ann Otol Rhinol Laryngol Suppl, 1995, 166: 312-314.
[13] Nikolopoulos TP, Arehbold SM, Gregory S. Young deaf children with hearing aids or cochlear implants: early assessment package for monitoring progress[J]. Int J Pediatr Otol, 2005, 69: 175. doi: 10.1016/j.ijporl.2004.08.016
[14] 刘建菊, 孙喜斌. 人工耳蜗植入儿童康复效果评估方法述评[J]. 残疾人研究, 2012, 2: 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CJRY201202013.htm
[15] 李佳楠, 韩东一, 洪梦迪, 等. 语后聋长期全聋耳的人工耳蜗植入[J]. 中华耳科学杂志, 2010, 8(4): 376-381. doi: 10.3969/j.issn.1672-2922.2010.04.004
[16] Grill C, Bergsteinsdóttir K, Ogmundsdóttir MH, et al. MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function[J]. Hum Mol Genet, 2013, 22(21): 43574367.
[17] 张会敏, 陈森, 孙宇, 等. 聋病基因诊断在评估人工耳蜗植入术预后中的价值[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(3): 274-281. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202103021.htm
[18] Abdurehim Y, Lehmann A, Zeitouni AG. Predictive Value of GJB2 Mutation Status for Hearing Outcomes of Pediatric Cochlear Implantation[J]. Otolaryngol Head Neck Surg, 2017, 157(1): 16-24. doi: 10.1177/0194599817697054
[19] Yan YJ, Li Y, Yang T, et al. The effect of GJB2 and SLC26A4 gene mutations on rehabilitative outcomes in pediatric cochlear implant patients[J]. Eur Arch Otorhinolaryngol, 2013, 270(11): 2865-2870. doi: 10.1007/s00405-012-2330-y
[20] 许庆庆, 翟所强, 韩东一, 等. 不同年龄语前聋患者人工耳蜗植入效果的Meta分析[J]. 临床耳鼻咽喉头颈外科杂志, 2015, 29(4): 310-314. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201504005.htm
[21] El Bakkouri W, Loundon N, Thierry B, et al. Cochlear implantation and congenital deafness: Perceptive and lexical results in 2 genetically pediatric identified population[J]. Otol Neurotol, 2012, 33(4): 539-544. doi: 10.1097/MAO.0b013e31824bae35
[22] Esquia Medina GN, Borel S, Nguyen Y, et al. Is electrode-modiolus distance a prognostic factor for hearing performances after cochlear implant surgery?[J]. Audiol Neurootol, 2013, 18(6): 406-413. doi: 10.1159/000354115
[23] Selleck AM, Park LR, Brown KD. Factors Influencing Pediatric Cochlear Implant Outcomes: Carolina Sibling Study[J]. Otol Neurotol, 2019, 40(9): 1148-1152. doi: 10.1097/MAO.0000000000002342
[24] 郭思荃, 唐冬梅, 李华伟, 等. 语前聋儿童人工耳蜗植入后听觉言语能力评估[J]. 听力学及言语疾病杂志, 2015, 23(1): 61-65. doi: 10.3969/j.issn.1006-7299.2015.01.015
[25] Pau H, Gibson WP, Gardner-Berry K, et al. Cochlear implantations in children with Waardenburg syndrome: an electrophysiological and psychophysical review[J]. Cochlear Implants Int, 2006, 7(4): 202-206. doi: 10.1179/cim.2006.7.4.202
[26] 黄玮津, 余乐茵, 蔡颖琳, 等. 不同干预模式听觉言语康复效果比较[J]. 中国听力语言康复科学杂志, 2021, 19(3): 215-218. doi: 10.3969/j.issn.1672-4933.2021.03.014
[27] 庞仕秀, 李巍, 姜学钧. 双侧人工耳蜗植入术治疗双侧感音神经性聋的研究进展[J]. 医学综述, 2018, 24(17): 3435-3440. doi: 10.3969/j.issn.1006-2084.2018.17.021
[28] Smilsky K, Dixon PR, Smith L, et al. Isolated Second Implant Adaptation Period in Sequential Cochlear Implantation in Adults[J]. Otol Neurotol, 2017, 38(8): e274-e281. doi: 10.1097/MAO.0000000000001461
[29] Lammers MJ, van der Heijden GJ, Pourier VE, et al. Bilateral cochlear implantation in children: a systematic review and best-evidence synthesis[J]. Laryngoscope, 2014, 124(7): 1694-1699. doi: 10.1002/lary.24582
[30] Kelvasa D, Dietz M. Auditory Model-Based Sound Direction Estimation With Bilateral Cochlear Implants[J]. TRENDS HEAR, 2015, 19: 2331216515616378.
[31] Brown CA. Corrective binaural processing for bilateral cochlear implant patients[J]. PLoS One, 2018, 13(1): e0187965. doi: 10.1371/journal.pone.0187965
[32] Illg A, Sandner C, Büchner A, et al. The Optimal inter-implant interval in pediatric sequential bilateral implantation[J]. Hear Res, 2019, 372: 80-87. doi: 10.1016/j.heares.2017.10.010
[33] Smulders YE, van Zon A, Stegeman I, . et al Comparison of Bilateral and Unilateral Cochlear Implantation in Adults: A Randomized Clinical Trial[J]. JAMA Otolaryngol Head Neck Surg, 2016, 142(3): 249-256. doi: 10.1001/jamaoto.2015.3305
[34] van Zon A, Smulders YE, Stegeman I, et al. Stable benefits of bilateral over unilateral cochlear implantation after two years: A randomized controlled trial[J]. Laryngoscope, 2017, 127(5): 1161-1168. doi: 10.1002/lary.26239