获得性喉气管狭窄发生机制的研究进展

胡彬, 陈佳瑞, 李为, 等. 获得性喉气管狭窄发生机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(4): 310-314. doi: 10.13201/j.issn.2096-7993.2022.04.016
引用本文: 胡彬, 陈佳瑞, 李为, 等. 获得性喉气管狭窄发生机制的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(4): 310-314. doi: 10.13201/j.issn.2096-7993.2022.04.016
HU Bin, CHEN Jiarui, LI Wei, et al. An updated review of the mechanism of fibrosis in acquired laryngotrachealstenosis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(4): 310-314. doi: 10.13201/j.issn.2096-7993.2022.04.016
Citation: HU Bin, CHEN Jiarui, LI Wei, et al. An updated review of the mechanism of fibrosis in acquired laryngotrachealstenosis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2022, 36(4): 310-314. doi: 10.13201/j.issn.2096-7993.2022.04.016

获得性喉气管狭窄发生机制的研究进展

  • 基金项目:
    上海市“医苑新星”青年医学人才培养资助计划[沪卫计人事(2019)72号]
详细信息

An updated review of the mechanism of fibrosis in acquired laryngotrachealstenosis

More Information
  • 加载中
  • [1]

    王颖. 儿童喉气管狭窄的研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(21): 1684-1686. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH201821019.htm

    [2]

    郭志华, 崔鹏程, 赵大庆, 等. 15例特发性声门下狭窄诊疗分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(2): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202002018.htm

    [3]

    郭志华, 赵大庆, 邢园, 等. 复发性多软骨炎并发喉气管狭窄的诊断和治疗[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-LCEH202006012.htm

    [4]

    Hu B, Wang J, Chen J, et al. The heterogeneity of fibroblasts in laryngotracheal stenosis and skin hypertrophic scar in pediatric patients[J]. Int J Pediatr Otorhinolaryngol, 2021, 145: 110709. doi: 10.1016/j.ijporl.2021.110709

    [5]

    Ma G, Samad I, Motz K, et al. Metabolic variations in normal and fibrotic human laryngotracheal-derived fibroblasts: A Warburg-like effect[J]. Laryngoscope, 2017, 127(3): E107-E113. doi: 10.1002/lary.26254

    [6]

    Kang YP, Lee SB, Lee JM, et al. Metabolic Profiling Regarding Pathogenesis of Idiopathic Pulmonary Fibrosis[J]. J Proteome Res, 2016, 15(5): 1717-1724. doi: 10.1021/acs.jproteome.6b00156

    [7]

    Tsai HW, Motz KM, Ding D, et al. Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis[J]. Laryngoscope, 2020, 130(12): E773-E781.

    [8]

    Murphy MK, Motz KM, Ding D, et al. Targeting metabolic abnormalities to reverse fibrosis in iatrogenic laryngotracheal stenosis[J]. Laryngoscope, 2018, 128(2): E59-E67. doi: 10.1002/lary.26893

    [9]

    Yin X, Choudhury M, Kang JH, et al. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-beta[J]. Sci Signal, 2019, 12(612): eaax4067. doi: 10.1126/scisignal.aax4067

    [10]

    Andrianifahanana M, Hernandez DM, Yin X, et al. Profibrotic up-regulation of glucose transporter 1 by TGF-beta involves activation of MEK and mammalian target of rapamycin complex 2 pathways[J]. FASEB J, 2016, 30(11): 3733-3744. doi: 10.1096/fj.201600428R

    [11]

    Leone RD, Zhao L, Englert JM, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021. doi: 10.1126/science.aav2588

    [12]

    Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218. doi: 10.1016/j.tibs.2015.12.001

    [13]

    Li L, Liang Y, Kang L, et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1[J]. Cancer Cell, 2018, 33(3): 368-385. e7. doi: 10.1016/j.ccell.2018.01.010

    [14]

    Micalizzi DS, Wang CA, Farabaugh SM, et al. Homeoprotein Six1 increases TGF-beta type I receptor and converts TGF-beta signaling from suppressive to supportive for tumor growth[J]. Cancer Res, 2010, 70(24): 10371-10380. doi: 10.1158/0008-5472.CAN-10-1354

    [15]

    Xie N, Tan Z, Banerjee S, et al. Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis[J]. Am J Respir Crit Care Med, 2015, 192(12): 1462-1474. doi: 10.1164/rccm.201504-0780OC

    [16]

    Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-811. doi: 10.1038/s41374-020-0404-9

    [17]

    Romani P, Valcarcel-Jimenez L, Frezza C, et al. Crosstalk between mechanotransduction and metabolism[J]. Nat Rev Mol Cell Biol, 2021, 22(1): 22-38. doi: 10.1038/s41580-020-00306-w

    [18]

    Park JS, Burckhardt CJ, Lazcano R, et al. Mechanical regulation of glycolysis via cytoskeleton architecture[J]. Nature, 2020, 578(7796): 621-626. doi: 10.1038/s41586-020-1998-1

    [19]

    Zhao X, Kwan J, Yip K, et al. Targeting metabolic dysregulation for fibrosis therapy[J]. Nat Rev Drug Discov, 2020, 19(1): 57-75. doi: 10.1038/s41573-019-0040-5

    [20]

    Motz KM, Yin LX, Samad I, et al. Quantification of Inflammatory Markers in Laryngotracheal Stenosis[J]. Otolaryngol Head Neck Surg, 2017, 157(3): 466-472. doi: 10.1177/0194599817706930

    [21]

    Hillel AT, Ding D, Samad I, et al. T-Helper 2 Lymphocyte Immunophenotype Is Associated With Iatrogenic Laryngotracheal Stenosis[J]. Laryngoscope, 2019, 129(1): 177-186. doi: 10.1002/lary.27321

    [22]

    Ghosh A, Malaisrie N, Leahy KP, et al. Cellular adaptive inflammation mediates airway granulation in a murine model of subglottic stenosis[J]. Otolaryngol Head Neck Surg, 2011, 144(6): 927-933. doi: 10.1177/0194599810397750

    [23]

    Motz K, Samad I, Yin LX, et al. Interferon-γ Treatment of Human Laryngotracheal Stenosis-Derived Fibroblasts[J]. JAMA Otolaryngol Head Neck Surg, 2017, 143(11): 1134-1140. doi: 10.1001/jamaoto.2017.0977

    [24]

    Gieseck RL, 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis[J]. Nat Rev Immunol, 2018, 18(1): 62-76. doi: 10.1038/nri.2017.90

    [25]

    Dong Y, Yang M, Zhang J, et al. Depletion of CD8+ T Cells Exacerbates CD4+ T Cell-Induced Monocyte-to-Fibroblast Transition in Renal Fibrosis[J]. J Immunol, 2016, 196(4): 1874-1881. doi: 10.4049/jimmunol.1501232

    [26]

    Motz K, Lina I, Murphy MK, et al. M2 Macrophages Promote Collagen Expression and Synthesis in Laryngotracheal Stenosis Fibroblasts[J]. Laryngoscope, 2021, 131(2): E346-E353.

    [27]

    Satoh T, Nakagawa K, Sugihara F, et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis[J]. Nature, 2017, 541(7635): 96-101. doi: 10.1038/nature20611

    [28]

    Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells[J]. Nature, 2019, 573(7774): 430-433. doi: 10.1038/s41586-019-1546-z

    [29]

    Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis[J]. J Clin Invest, 2018, 128(1): 45-53. doi: 10.1172/JCI93557

    [30]

    Liu G, Cooley MA, Nair PM, et al. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c[J]. J Pathol, 2017, 243(4): 510-523. doi: 10.1002/path.4979

    [31]

    O'dwyer DN, Moore BB. The role of periostin in lung fibrosis and airway remodeling[J]. Cell Mol Life Sci, 2017, 74(23): 4305-4314. doi: 10.1007/s00018-017-2649-z

    [32]

    Philp CJ, Siebeke I, Clements D, et al. Extracellular Matrix Cross-Linking Enhances Fibroblast Growth and Protects against Matrix Proteolysis in Lung Fibrosis[J]. Am J Respir Cell Mol Biol, 2018, 58(5): 594-603. doi: 10.1165/rcmb.2016-0379OC

    [33]

    Roderfeld M, Rath T, Pasupuleti S, et al. Bone marrow transplantation improves hepatic fibrosis in Abcb4-/-mice via Th1 response and matrix metalloproteinase activity[J]. Gut, 2012, 61(6): 907-916. doi: 10.1136/gutjnl-2011-300608

    [34]

    Mazhar K, Gunawardana M, Webster P, et al. Bacterial biofilms and increased bacterial counts are associated with airway stenosis[J]. Otolaryngol Head Neck Surg, 2014, 150(5): 834-840. doi: 10.1177/0194599814522765

    [35]

    Harkness LM, Weckmann M, Kopp M, et al. Tumstatin regulates the angiogenic and inflammatory potential of airway smooth muscle extracellular matrix[J]. J Cell Mol Med, 2017, 21(12): 3288-3297. doi: 10.1111/jcmm.13232

    [36]

    Fuja TJ, Probst-Fuja MN, Titze IR. Changes in expression of extracellular matrix genes, fibrogenic factors, and actin cytoskeletal organization in retinol treated and untreated vocal fold stellate cells[J]. Matrix Biol, 2006, 25(1): 59-67. doi: 10.1016/j.matbio.2005.08.005

    [37]

    Olmos-Zuniga JR, Baltazares-Lipp M, Hernandez-Jimenez C, et al. Treatment with Hyaluronic Acid and Collagen-Polyvinylpyrrolidone Improves Extracellular Matrix Assembly for Scarring after Tracheal Resection[J]. Biomed Res Int, 2020, 2020: 3964518.

    [38]

    Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis[J]. Eur Respir Rev, 2018, 27(148): 180033. doi: 10.1183/16000617.0033-2018

    [39]

    Gross JH, Giraldez-Rodriguez LA, Klein AM. Bacterial Laryngotracheitis and Associated Upper Airway Obstruction: A Case Series[J]. Ann Otol Rhinol Laryngol, 2015, 124(12): 1002-1005. doi: 10.1177/0003489415592161

    [40]

    Hillel AT, Tang SS, Carlos C, et al. Laryngotracheal Microbiota in Adult Laryngotracheal Stenosis[J]. mSphere, 2019, 4(3): e00211-00219.

    [41]

    Leite C, de Freitas F, de Cássia Firmida M, et al. Analysis of airway microbiota in adults from a Brazilian cystic fibrosis center[J]. Braz J Microbiol, 2020, 51(4): 1747-1755. doi: 10.1007/s42770-020-00381-3

    [42]

    O'Dwyer DN, Ashley SL, Gurczynski SJ, et al. Lung Microbiota Contribute to Pulmonary Inflammation and Disease Progression in Pulmonary Fibrosis[J]. Am J Respir Crit Care Med, 2019, 199(9): 1127-1138. doi: 10.1164/rccm.201809-1650OC

    [43]

    Dickson RP, Harari S, Kolb M. Making the case for causality: what role do lung microbiota play in idiopathic pulmonary fibrosis?[J]. Eur Respir J, 2020, 55(4): 2000318. doi: 10.1183/13993003.00318-2020

    [44]

    Invernizzi R, Barnett J, Rawal B, et al. Bacterial burden in the lower airways predicts disease progression in idiopathic pulmonary fibrosis and is independent of radiological disease extent[J]. Eur Respir J, 2020, 55(4): 1901519. doi: 10.1183/13993003.01519-2019

    [45]

    Bora SA, Kennett MJ, Smith PB, et al. The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23[J]. Front Immunol, 2018, 9: 408. doi: 10.3389/fimmu.2018.00408

    [46]

    Lang S, Farowski F, Martin A, et al. Prediction of advanced fibrosis in non-alcoholic fatty liver disease using gut microbiota-based approaches compared with simple non-invasive tools[J]. Sci Rep, 2020, 10(1): 9385. doi: 10.1038/s41598-020-66241-0

    [47]

    Loomba R, Seguritan V, Li W, et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease[J]. Cell Metab, 2019, 30(3): 607. doi: 10.1016/j.cmet.2019.08.002

  • 加载中
计量
  • 文章访问数:  1221
  • PDF下载数:  492
  • 施引文献:  0
出版历程
收稿日期:  2021-04-19
刊出日期:  2022-04-03

目录