应用16SrRNA基因测序技术研究慢性鼻窦炎微生物学的进展

刘肖, 刘红兵, 李春花. 应用16SrRNA基因测序技术研究慢性鼻窦炎微生物学的进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(7): 658-661. doi: 10.13201/j.issn.2096-7993.2021.07.019
引用本文: 刘肖, 刘红兵, 李春花. 应用16SrRNA基因测序技术研究慢性鼻窦炎微生物学的进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(7): 658-661. doi: 10.13201/j.issn.2096-7993.2021.07.019
LIU Xiao, LIU Hongbing, LI Chunhua. Advances in the study of chronic sinusitis microbiology using 16SrRNA gene sequencing technology[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(7): 658-661. doi: 10.13201/j.issn.2096-7993.2021.07.019
Citation: LIU Xiao, LIU Hongbing, LI Chunhua. Advances in the study of chronic sinusitis microbiology using 16SrRNA gene sequencing technology[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(7): 658-661. doi: 10.13201/j.issn.2096-7993.2021.07.019

应用16SrRNA基因测序技术研究慢性鼻窦炎微生物学的进展

详细信息

Advances in the study of chronic sinusitis microbiology using 16SrRNA gene sequencing technology

More Information
  • 加载中
  • [1]

    Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities[J]. Allergy, 2015, 70(5): 533-539. doi: 10.1111/all.12577

    [2]

    Ocampo CJ, Peters AT. Medical therapy as the primary modality for the management of chronic rhinosinusitis[J]. Allergy Asthma Proc, 2013, 34(2): 132-137. doi: 10.2500/aap.2013.34.3636

    [3]

    中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001

    [4]

    Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015): 337-341. doi: 10.1126/science.1198469

    [5]

    Ramakrishnan VR, Feazel LM, Gitomer SA, et al. The microbiome of the middle meatus in healthy adults[J]. PLoS One, 2013, 8(12): e85507. doi: 10.1371/journal.pone.0085507

    [6]

    Boase S, Foreman A, Cleland E, et al. The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection[J]. BMC Infect Dis, 2013, 13: 210. doi: 10.1186/1471-2334-13-210

    [7]

    Bomar L, Brugger SD, Lemon KP. Bacterial microbiota of the nasal passages across the span of human life[J]. Curr Opin Microbiol, 2018, 41: 8-14. doi: 10.1016/j.mib.2017.10.023

    [8]

    Hoggard M, Wagner Mackenzie B, Jain R, et al. Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease[J]. Clin Microbiol Rev, 2017, 30(1): 321-348. doi: 10.1128/CMR.00060-16

    [9]

    Biswas K, Chang A, Hoggard M, et al. Toll-like receptor activation by sino-nasal mucus in chronic rhinosinusitis[J]. Rhinology, 2017, 55(1): 59-69. doi: 10.4193/Rhin16.201

    [10]

    Hoggard M, Biswas K, Zoing M, et al. Evidence of microbiota dysbiosis in chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2017, 7(3): 230-239. doi: 10.1002/alr.21871

    [11]

    Abreu NA, Nagalingam NA, Song Y, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis[J]. Sci Transl Med, 2012, 4(151): 151ra124.

    [12]

    Hoggard M, Waldvogel-Thurlow S, Zoing M, et al. Inflammatory Endotypes and Microbial Associations in Chronic Rhinosinusitis[J]. Front Immunol, 2018, 9: 2065. doi: 10.3389/fimmu.2018.02065

    [13]

    Cope EK, Goldberg AN, Pletcher SD, et al. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences[J]. Microbiome, 2017, 5(1): 53. doi: 10.1186/s40168-017-0266-6

    [14]

    Ramakrishnan VR, Hauser LJ, Feazel LM, et al. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome[J]. J Allergy Clin Immunol, 2015, 136(2): 334-342. doi: 10.1016/j.jaci.2015.02.008

    [15]

    Cleland EJ, Bassiouni A, Vreugde S, et al. The bacterial microbiome in chronic rhinosinusitis: Richness, diversity, postoperative changes, and patient outcomes[J]. Am J Rhinol Allergy, 2016, 30(1): 37-43. doi: 10.2500/ajra.2016.30.4261

    [16]

    Pascual J, Macián MC, Arahal DR, et al. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes[J]. Int J Syst Evol Microbiol, 2010, 60(Pt 1): 154-165.

    [17]

    Huang WX, Wang HP, Wang YL, et al. High-throughput sequencing reveals the change of gut microbiota in infants with pneumonia following antibiotic treatment[J]. Chin J Microecol, 2016.

    [18]

    Chakravorty S, Helb D, Burday M, et al. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria[J]. J Microbiol Methods, 2007, 69(2): 330-339. doi: 10.1016/j.mimet.2007.02.005

    [19]

    Engelbrektson A, Kunin V, Wrighton KC, et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness[J]. ISME J, 2010, 4(5): 642-647. doi: 10.1038/ismej.2009.153

    [20]

    Hong S, Bunge J, Leslin C, et al. Polymerase chain reaction primers miss half of rRNA microbial diversity[J]. ISME J, 2009, 3(12): 1365-1373. doi: 10.1038/ismej.2009.89

    [21]

    Scholz MB, Lo CC, Chain PS. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis[J]. Curr Opin Biotechnol, 2012, 23(1): 9-15. doi: 10.1016/j.copbio.2011.11.013

    [22]

    Vickery TW, Kofonow JM, Ramakrishnan VR. Characterization of Sinus Microbiota by 16S Sequencing from Swabs[M]. 2017.

    [23]

    Jain R, Waldvogel-Thurlow S, Darveau R, et al. Differences in the paranasal sinuses between germ-free and pathogen-free mice[J]. Int Forum Allergy Rhinol, 2016, 6(6): 631-637. doi: 10.1002/alr.21712

    [24]

    Peleg O, Blinder D, Yudovich K, et al. Microflora of normal maxillary sinuses: does it justify perioperative antibiotic treatment in sinus augmentation procedures[J]. Clin Oral Investig, 2019, 23(5): 2173-2177. doi: 10.1007/s00784-018-2662-0

    [25]

    Biswas K, Hoggard M, Jain R, et al. The nasal microbiota in health and disease: variation within and between subjects[J]. Front Microbiol, 2015, 9: 134.

    [26]

    Shilts MH, Rosas-Salazar C, Tovchigrechko A, et al. Minimally Invasive Sampling MethodsIdentifies Differences in Taxonomic Richness of Nasal Microbiomes in Young Infants Associated with Mode of Delivery[J]. Microb Ecol, 2016, 71(1): 233-242. doi: 10.1007/s00248-015-0663-y

    [27]

    The human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214. doi: 10.1038/nature11234

    [28]

    Wos-Oxley ML, Chaves-Moreno D, Jáuregui R, et al. Exploring the bacterial assemblages along the human nasal passage[J]. Environ Microbiol, 2016, 18(7): 2259-2271. doi: 10.1111/1462-2920.13378

    [29]

    Wagner Mackenzie B, Waite DW, Hoggard M, et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis[J]. Environ Microbiol, 2017, 19(1): 381-392. doi: 10.1111/1462-2920.13632

    [30]

    Ramakrishnan VR, Feazel LM, Gitomer SA, et al. The microbiome of the middle meatus in healthy adults[J]. PLoS One, 2013, 8(12): e85507. doi: 10.1371/journal.pone.0085507

    [31]

    Schwartz JS, Peres AG, Mfuna Endam L, et al. Topical probiotics as a therapeutic alternative for chronic rhinosinusitis: A preclinical proof of concept[J]. Am J Rhinol Allergy, 2016, 30(6): 202-205. doi: 10.2500/ajra.2016.30.4372

    [32]

    Anderson M, Stokken J, Sanford T, et al. A systematic review of the sinonasal microbiome in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2016, 30(3): 161-166. doi: 10.2500/ajra.2016.30.4320

    [33]

    Copeland E, Leonard K, Carney R, et al. Chronic Rhinosinusitis: Potential Role of Microbial Dysbiosis and Recommendations for Sampling Sites[J]. Front Cell Infect Microbiol, 2018, 8: 57. doi: 10.3389/fcimb.2018.00057

    [34]

    Lal D, Keim P, Delisle J, et al. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects[J]. Int Forum Allergy Rhinol, 2017, 7(6): 561-569. doi: 10.1002/alr.21934

    [35]

    Biswas K, Cavubati R, Gunaratna S, et al. Comparison of Subtyping Approaches and the Underlying Drivers of Microbial Signatures for Chronic Rhinosinusitis[J]. mSphere, 2019, 4(1): e00679-18. doi: 10.1128/mSphere.00679-18

    [36]

    Koeller K, Herlemann D, Schuldt T, et al. Microbiome and Culture Based Analysis of Chronic Rhinosinusitis Compared to Healthy Sinus Mucosa[J]. Front Microbiol, 2018, 9: 643. doi: 10.3389/fmicb.2018.00643

    [37]

    Wei HZ, Li YC, Wang XD, et al. The microbiology of chronic rhinosinusitis with and without nasal polyps[J]. Eur Arch Otorhinolaryngol, 2018, 275(6): 1439-1447. doi: 10.1007/s00405-018-4931-6

    [38]

    Liu Q, Lu X, Bo M, et al. The microbiology of chronic rhinosinusitis with and without nasal polyps[J]. Acta Otolaryngol, 2014, 134(12): 1251-1258. doi: 10.3109/00016489.2013.879737

    [39]

    Rom D, Bassiouni A, Eykman E, et al. The Association Between Disease Severity and Microbiome in Chronic Rhinosinusitis[J]. Laryngoscope, 2019, 129(6): 1265-1273. doi: 10.1002/lary.27726

    [40]

    Hoggard M, Nocera A, Biswas K, et al. The sinonasal microbiota, neural signaling, and depression in chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2018, 8(3): 394-405. doi: 10.1002/alr.22074

  • 加载中
计量
  • 文章访问数:  1225
  • PDF下载数:  125
  • 施引文献:  0
出版历程
收稿日期:  2020-06-14
刊出日期:  2021-07-05

目录