脊柱侧凸合并感音神经性聋相关综合征遗传学研究进展

吴侃, 李竹梅, 张秋静. 脊柱侧凸合并感音神经性聋相关综合征遗传学研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(6): 556-562. doi: 10.13201/j.issn.2096-7993.2021.06.017
引用本文: 吴侃, 李竹梅, 张秋静. 脊柱侧凸合并感音神经性聋相关综合征遗传学研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(6): 556-562. doi: 10.13201/j.issn.2096-7993.2021.06.017
WU Kan, LI Zhumei, ZHANG Qiujing. Advances in studies on genetics of syndromes combining sensorineural hearing loss with scoliosis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(6): 556-562. doi: 10.13201/j.issn.2096-7993.2021.06.017
Citation: WU Kan, LI Zhumei, ZHANG Qiujing. Advances in studies on genetics of syndromes combining sensorineural hearing loss with scoliosis[J]. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(6): 556-562. doi: 10.13201/j.issn.2096-7993.2021.06.017

脊柱侧凸合并感音神经性聋相关综合征遗传学研究进展

  • 基金项目:
    国家自然科学基金资助项目(No:81600814)
详细信息
    通讯作者: 张秋静,E-mail:zqj99@163.com

    现在中国人民解放军空军军医大学航空航天临床医学中心(西安,710032)

  • 中图分类号: R764.43

Advances in studies on genetics of syndromes combining sensorineural hearing loss with scoliosis

More Information
  • 加载中
  • 表 1  脊柱侧凸合并SNHL相关综合征的临床特点及致病基因

    综合征亚型名称 基因 遗传模式 听力损失
    发病年龄
    听力损失程度 听力损失
    类型
    听力图
    曲线
    STL1 COL2A1 常显 儿童期 轻度到中度 SNHL/传导性聋/混合性聋 下降型
    成骨不全症 COL1A1/COL1A2 常显 20~40岁 未提及 SNHL/传导性聋/混合性聋 未提及
    Steel综合征 COL27A1 常隐 儿童期 极重度 SNHL 未提及
    Ehlers-Danlos综合征脊柱侧凸2型 FKBP14 常隐 儿童期 重度 SNHL 下降型
    EDS Kosho型/EDS肌肉挛缩型 CHST14 常隐 未提及 未提及 SNHL 未提及
    EDS 4B型 ZNF469 常隐 未提及 未提及 SNHL/传导性聋/混合性聋 未提及
    CATSHL综合征 FGFR3 常显/常隐 先天到6岁 轻度到重度 SNHL 下降型
    脊椎跖骨滑膜病综合征 FLNB 常显/常隐 2~10岁 中度到重度 SNHL/传导性聋/混合性聋 未提及
    腓骨肌萎缩症1B型 MPZ 常显 儿童期到成年期 未提及 SNHL 未提及
    腓骨肌萎缩症2C型 TRPV4 常显 35~62岁 轻度到重度 SNHL 下降/上升/U型
    腓骨肌萎缩症4C型 SH3TC2 常隐 儿童期到25岁 轻度到重度 SNHL 未提及
    腓骨肌萎缩症4H型 FDG4 常隐 15岁 轻度 SNHL 未提及
    粘多糖病ⅣA型 GALNS 常隐 5岁 轻度到中度 SNHL 未提及
    α-甘露糖苷贮积症 MAN2B1 常隐 未提及 中度到重度 SNHL 未提及
    先天性垂体激素缺乏症3型 LHX3 常隐 未提及 轻度到极重度 SNHL 未提及
    Alstrom综合征 ALMS1 常隐 儿童期 轻度到中度 SNHL 下降型
    下载: 导出CSV

    表 2  脊柱侧凸合并SNHL的典型病例的遗传信息总结

    参考文献 综合征名称 基因 性别 年龄/岁 国籍 变异位点
    Rose等[4] STL1 COL2A1 56 美国 p.Leu95fs*107 hemo
    STL1 COL2A1 35 美国 p.Gly322fs*345 hemo
    STL1 COL2A1 36 美国 p.Gly322fs*345 hemo
    STL1 COL2A1 30 美国 p.Arg333* hemo
    STL1 COL2A1 55 美国 p.Arg333* hemo
    STL1 COL2A1 70 美国 p.Arg732* hemo
    Lin等[12] 成骨不全症 COL1A1/COL1A2 31 中国 未提及
    Pölsler等[14] Steel综合征 COL27A1 9 叙利亚 p.Phe32Leufs*71/p.Lys1026Argfs*33
    Baumann等[15] Ehlers-Danlos综合征脊柱侧凸2型 FKBP14 16 奥地利 p.Glu122Argfs*7 homo
    Ehlers-Danlos综合征脊柱侧凸2型 FKBP14 48 奥地利 p.Glu122Argfs*7 homo
    Ehlers-Danlos综合征脊柱侧凸2型 FKBP14 11 意大利 p.Glu122Argfs*7 homo
    Ehlers-Danlos综合征脊柱侧凸2型 FKBP14 3 德国 p.Glu122Argfs*7/p.Thr15*
    Kosho等[19] EDS Kosho型 CHST14 16 日本 p.Pro281Leu/p.Tyr293Cys
    EDS Kosho型 CHST14 32 日本 p.Pro281Leu homo
    EDS Kosho型 CHST14 32 日本 p.Pro281Leu homo
    EDS Kosho型 CHST14 4 日本 p.Pro281Leu/p.Tyr293Cys
    Malfait等[18] EDS肌肉挛缩型 CHST14 22 土耳其 p.Val49* homo
    EDS肌肉挛缩型 CHST14 21 土耳其 p.Val49* homo
    Christensen等[20] EDSⅣB型 ZNF469 42 挪威 p.Cys3339Tyr homo
    EDSⅣB型 ZNF469 48 挪威 p.Cys3339Tyr homo
    Makrythanasis等[22] CATSHL综合征 FGFR3 14 埃及 p.Thr546Lys homo
    Krakow等[23] 脊椎跖骨滑膜病综合征 FLNB 5 美国 p.Arg649X homo
    Oonk等[28] 腓骨肌萎缩症2C型 TRPV4 38 荷兰 p.Arg269His hemo
    腓骨肌萎缩症2C型 TRPV4 48 荷兰 p.Arg269His hemo
    腓骨肌萎缩症2C型 TRPV4 68 荷兰 p.Arg269His hemo
    Lerat等[31] 腓骨肌萎缩症4C型 SH3TC2 22 法国 p.Arg954* homo
    腓骨肌萎缩症4C型 SH3TC2 29 法国 p.Arg954* homo
    腓骨肌萎缩症4C型 SH3TC2 56 法国 p.Tyr1107* homo
    腓骨肌萎缩症4C型 SH3TC2 68 法国 p.Arg954* /p.Leu1126Pro
    腓骨肌萎缩症4C型 SH3TC2 71 法国 p.Asn881Ser/p.Trp1199*
    腓骨肌萎缩症4C型 SH3TC2 83 法国 p.Ala1206Asp homo
    Kondo等[32] 腓骨肌萎缩症4H型 FDG4 65 日本 p.Arg242* homo
    Xu等[33] 粘多糖病ⅣA型 GALNS 17 中国 p.Gly168Leu homo
    Malm等[34] α-甘露糖苷贮积症 MAN2B1 未提及 4 南非 未提及
    Ramzan等[35] 先天性垂体激素缺乏症3型 LHX3 11 南非 p.Arg156* homo
    Liang等[37] Alstrom综合征 ALMS1 14 中国 p.Asn3150Lysfs2*/p.Val3154*fs
    下载: 导出CSV
  • [1]

    Deng H, Huang X, Yuan L. Molecular genetics of the COL2A1-related disorders[J]. Mutat Res Rev Mutat Res, 2016, 768: 1-13. doi: 10.1016/j.mrrev.2016.02.003

    [2]

    Tunkel D, Alade Y, Kerbavaz R, et al. Hearing loss in skeletal dysplasia patients[J]. Am J Med Genet A, 2012, 158A(7): 1551-1555. doi: 10.1002/ajmg.a.35373

    [3]

    Vogiatzi MG, Li D, Tian L, et al. A novel dominant COL11A1 mutation in a child with Stickler syndrome type Ⅱ is associated with recurrent fractures[J]. Osteoporos Int, 2018, 29(1): 247-251. doi: 10.1007/s00198-017-4229-3

    [4]

    Rose PS, Levy HP, Liberfarb RM, et al. Stickler syndrome: clinical characteristics and diagnostic criteria[J]. Am J Med Genet A, 2005, 138A(3): 199-207. doi: 10.1002/ajmg.a.30955

    [5]

    Acke FR, Swinnen FK, Malfait F, et al. Auditory phenotype in Stickler syndrome: results of audiometric analysis in 20 patients[J]. Eur Arch Otorhinolaryngol, 2016, 273(10): 3025-3034. doi: 10.1007/s00405-016-3896-6

    [6]

    Szymko-Bennett YM, Mastroianni MA, Shotland LI, et al. Auditory dysfunction in Stickler syndrome[J]. Arch Otolaryngol, 2001, 127(9): 1061-1068. doi: 10.1001/archotol.127.9.1061

    [7]

    Acke FR, Dhooge IJ, Malfait F, et al. Hearing impairment in Stickler syndrome: a systematic review[J]. Orphanet J Rare Dis, 2012, 7: 84. doi: 10.1186/1750-1172-7-84

    [8]

    Baijens LW, De Leenheer EM, Weekamp HH, et al. Stickler syndrome type Ⅰ and Stapes ankylosis[J]. Int J Pediatr Otorhinolaryngol, 2004, 68(12): 1573-1580. doi: 10.1016/j.ijporl.2004.07.015

    [9]

    Marini JC, Forlino A, Bächinger HP, et al. Osteogenesis imperfecta[J]. Nat Rev Dis Primers, 2017, 3: 17052. doi: 10.1038/nrdp.2017.52

    [10]

    Liu G, Chen J, Zhou Y, et al. The genetic implication of scoliosis in osteogenesis imperfecta: a review[J]. J Spine Surg, 2017, 3(4): 666-678. doi: 10.21037/jss.2017.10.01

    [11]

    Chougui K, Addab S, Palomo T, et al. Clinical manifestations of osteogenesis imperfecta in adulthood: An integrative review of quantitative studies and case reports[J]. Am J Med Genet A, 2020, 182(4): 842-865. doi: 10.1002/ajmg.a.61497

    [12]

    Lin HY, Lin SP, Chuang CK, et al. Clinical features of osteogenesis imperfecta in Taiwan[J]. J Formos Med Assoc, 2009, 108(7): 570-576. doi: 10.1016/S0929-6646(09)60375-2

    [13]

    Thuresson AC, Soussi Zander C, Zhao JJ, et al. Whole genome sequencing of consanguineous families reveals novel pathogenic variants in intellectual disability[J]. Clin Genet, 2019, 95(3): 436-439. doi: 10.1111/cge.13470

    [14]

    Pölsler L, Schatz UA, Simma B, et al. A Syrian patient with Steel syndrome due to compound heterozygous COL27A1 mutations with colobomata of the eye[J]. Am J Med Genet A, 2020, 182(4): 730-734. doi: 10.1002/ajmg.a.61478

    [15]

    Baumann M, Giunta C, Krabichler B, et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss[J]. Am J Hum Genet, 2012, 90(2): 201-216. doi: 10.1016/j.ajhg.2011.12.004

    [16]

    Giunta C, Baumann M, Fauth C, et al. A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history[J]. Genet Med, 2018, 20(1): 42-54. doi: 10.1038/gim.2017.70

    [17]

    Shimizu K, Okamoto N, Miyake N, et al. Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: observation of two additional patients and comprehensive review of 20 reported patients[J]. Am J Med Genet A, 2011, 155A(8): 1949-1958.

    [18]

    Malfait F, Syx D, Vlummens P, et al. Musculocontractural Ehlers-Danlos Syndrome(former EDS type VIB)and adducted thumb clubfoot syndrome(ATCS)represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene[J]. Hum Mutat, 2010, 31(11): 1233-1239. doi: 10.1002/humu.21355

    [19]

    Kosho T, Miyake N, Hatamochi A, et al. A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations[J]. Am J Med Genet A, 2010, 152A(6): 1333-1346.

    [20]

    Christensen AE, Knappskog PM, Midtbø M, et al. Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene[J]. Invest Ophthalmol Vis Sci, 2010, 51(1): 47-52. doi: 10.1167/iovs.09-4251

    [21]

    Toydemir RM, Brassington AE, Bayrak-Toydemir P, et al. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss(CATSHL)syndrome[J]. Am J Hum Genet, 2006, 79(5): 935-941. doi: 10.1086/508433

    [22]

    Makrythanasis P, Temtamy S, Aglan MS, et al. A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly[J]. Hum Mutat, 2014, 35(8): 959-963. doi: 10.1002/humu.22597

    [23]

    Krakow D, Robertson SP, King LM, et al. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis[J]. Nat Genet, 2004, 36(4): 405-410. doi: 10.1038/ng1319

    [24]

    Isidor B, Cormier-Daire V, Le Merrer M, et al. Autosomal dominant spondylocarpotarsal synostosis syndrome: phenotypic homogeneity and genetic heterogeneity[J]. Am J Med Genet A, 2008, 146A(12): 1593-1597. doi: 10.1002/ajmg.a.32217

    [25]

    Pipis M, Rossor AM, Laura M, et al. Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges[J]. Nat Rev Neurol, 2019, 15(11): 644-656. doi: 10.1038/s41582-019-0254-5

    [26]

    Sanmaneechai O, Feely S, Scherer SS, et al. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene[J]. Brain, 2015, 138(Pt 11): 3180-3192.

    [27]

    Gees M, Owsianik G, Nilius B, et al. TRP channels[J]. Compr Physiol, 2012, 2(1): 563-608.

    [28]

    Oonk AM, Ekker MS, Huygen PL, et al. Intrafamilial variable hearing loss in TRPV4 induced spinal muscular atrophy[J]. Ann Otol Rhinol Laryngol, 2014, 123(12): 859-865. doi: 10.1177/0003489414539130

    [29]

    Thibodeau ML, Peters CH, Townsend KN, et al. Compound heterozygous TRPV4 mutations in two siblings with a complex phenotype including severe intellectual disability and neuropathy[J]. Am J Med Genet A, 2017, 173(11): 3087-3092. doi: 10.1002/ajmg.a.38400

    [30]

    Piscosquito G, Saveri P, Magri S, et al. Screening for SH3TC2 gene mutations in a series of demyelinating recessive Charcot-Marie-Tooth disease(CMT4)[J]. J Peripher Nerv Syst, 2016, 21(3): 142-149. doi: 10.1111/jns.12175

    [31]

    Lerat J, Magdelaine C, Lunati A, et al. Implication of the SH3TC2 gene in Charcot-Marie-Tooth disease associated with deafness and/or scoliosis: Illustration with four new pathogenic variants[J]. J Neurol Sci, 2019, 406: 116376. doi: 10.1016/j.jns.2019.06.027

    [32]

    Kondo D, Shinoda K, Yamashita KI, et al. A novel mutation in FGD4 causes Charcot-Marie-Tooth disease type 4H with cranial nerve involvement[J]. Neuromuscul Disord, 2017, 27(10): 959-961. doi: 10.1016/j.nmd.2017.07.011

    [33]

    Xu L, Ren Y, Yin J, et al. Analysis of endocrine hormone metabolism level in a Chinese patient with mucopolysaccharidosis IVA: A case report[J]. Medicine(Baltimore), 2018, 97(38): e12393.

    [34]

    Malm D, Nilssen Ø. Alpha-mannosidosis[J]. Orphanet J Rare Dis, 2008, 3: 21. doi: 10.1186/1750-1172-3-21

    [35]

    Ramzan K, Bin-Abbas B, Al-Jomaa L, et al. Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss[J]. BMC Endocr Disord, 2017, 17(1): 17. doi: 10.1186/s12902-017-0164-8

    [36]

    Rajab A, Kelberman D, de Castro SC, et al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss[J]. Hum Mol Genet, 2008, 17(14): 2150-2159. doi: 10.1093/hmg/ddn114

    [37]

    Liang X, Li H, Li H, et al. Novel ALMS1 mutations in Chinese patients with Alström syndrome[J]. Mol Vis, 2013, 19: 1885-1891.

    [38]

    Marshall JD, Beck S, Maffei P, et al. Alstrom syndrome[J]. Eur J Hum Genet, 2007, 15(12): 1193-1202. doi: 10.1038/sj.ejhg.5201933

    [39]

    Peter VG, Quinodoz M, Pinto-Basto J, et al. The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in the PISD gene[J]. Genet Med, 2019, 21(12): 2734-2743. doi: 10.1038/s41436-019-0595-x

    [40]

    Edward HL, D'Gama AM, Wojcik MH, et al. A novel missense mutation in TFAP2B associated with Char syndrome and central diabetes insipidus[J]. Am J Med Genet A, 2019, 179(7): 1299-1303.

    [41]

    Cappuccio G, Apuzzo D, Alagia M, et al. Expansion of the phenotype of lateral meningocele syndrome[J]. Am J Med Genet A, 2020, 182(5): 1259-1262. doi: 10.1002/ajmg.a.61536

  • 加载中
计量
  • 文章访问数:  1231
  • PDF下载数:  401
  • 施引文献:  0
出版历程
收稿日期:  2020-06-15
刊出日期:  2021-06-05

目录