新一代测序技术在先天性感音神经性聋中的应用研究

徐彬, 陈扬, 蒋艾, 等. 新一代测序技术在先天性感音神经性聋中的应用研究[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(11): 811-815. doi: 10.13201/j.issn.1001-1781.2018.11.003
引用本文: 徐彬, 陈扬, 蒋艾, 等. 新一代测序技术在先天性感音神经性聋中的应用研究[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(11): 811-815. doi: 10.13201/j.issn.1001-1781.2018.11.003
XU Bin, CHEN Yang, JIANG Ai, et al. Application of next generation sequencing in congenital sensorineural deafness[J]. J Clin Otorhinolaryngol Head Neck Surg, 2018, 32(11): 811-815. doi: 10.13201/j.issn.1001-1781.2018.11.003
Citation: XU Bin, CHEN Yang, JIANG Ai, et al. Application of next generation sequencing in congenital sensorineural deafness[J]. J Clin Otorhinolaryngol Head Neck Surg, 2018, 32(11): 811-815. doi: 10.13201/j.issn.1001-1781.2018.11.003

新一代测序技术在先天性感音神经性聋中的应用研究

  • 基金项目:

    国家自然科学基金(面上项目)(No:81470686);浙江省自然科学基金(No:LY14H130001);浙江省医药卫生科学研究基金计划(No:2014KYB077)

详细信息
    通讯作者: 付勇,E-mail:1307022@zju.edu.cn
  • 中图分类号: R764.43

Application of next generation sequencing in congenital sensorineural deafness

More Information
  • 目的:应用新一代测序技术(NGS)对门诊确诊为感音神经性聋的患儿进行基因检测,分析耳聋家庭致病基因的携带状况和遗传规律等信息,为遗传咨询、产前诊断、出生缺陷预防的临床实践提供理论基础。方法:收集我科门诊通过病史、听力学检测以及影像学检测确诊为感音神经性聋患儿94例,应用NGS检测与耳聋相关的159个基因外显子区、6个线粒体基因及3个miRNA,再对先证者的父母进行Sanger测序验证,得出先证者及父母耳聋基因表达的情况及相互关系。结果:94例耳聋患儿中,70例重度以上感音神经性聋,13例中重度聋,8例中度聋,3例轻度聋。通过NGS检测出23例携带致聋突变,总突变率为24.5%。GJB2基因突变11例,包括 235delC 纯合突变 6例,235delC 和 299_300del 复合杂合突变4例,235delC 和 c.176_191del 复合杂合突变1 例;SLC26A4基因突变 5 例,其中c.919-2A>G纯合突变2例,c.919-2A>G和c.2168A>G复合杂合突变1例,c.919-2A>G和c.754T>C复合杂合突变1例,c.919-2A>G和c.416-418del复合杂合突变1例;MT-RNR1基因2例;STRCKCNQ1USH2APOU3F4MITF基因各1例。结论:NGS具有快速、高通量、低成本等特点,可以更好地为临床提供用药、遗传咨询及婚育指导,有效预防和减少遗传性聋的发生。
  • 加载中
  • [1]

    HUANG X Z, WANG J B, KONG W J, et al.Practice of Otorhinolaryngology-Head and Neck Surgery[M].2nd.Beijing:People's Medical Publishing House, 2010:976-976.

    [2]

    ACMG.Genetics evaluation guidelines for the etiologic diagnosis ofcongenital hearing loss.Genetic Evaluation of Congenital Hearing Loss Expert Panel.ACMG statement[J].Genet Med, 2002, 4:162-171.

    [3]

    戴朴, 袁永一, 辛凤.耳聋基因诊断与遗传咨询[M].北京:人民卫生出版社, 2017:208-209.

    [4]

    戴朴.遗传性耳聋的预防和阻断[J].中华医学杂志, 2007, 87(40):2811-2813.

    [5]

    DAI Z Y, SUN B C, HUANG S S, et al.Correlation analysis of phenotype and genotype of GJB2 in patients with non-syndromic hearing loss in China[J].Gene, 2015, 570:272-226.

    [6]

    GRILLO A P, DE OLIVEIRA F M, DE CARVALHO G Q.Single nucleotide polymorphisms of the GJB2 and GJB6 genes are associated with autosomalrecessive nonsyndromic hearing loss[J].Biomed Res Int, 2015, 2015:318727.

    [7]

    SHI L, CHEN J.Prevalence of GJB2 gene mutation in330cochlear implant patients in the Jiangsu province[J].J Laryngol Otol, 2016, 130:902-906.

    [8]

    WOLF A, FROHNE A, ALLEN M, et al.A Novel Mutation in SLC26A4 Causes Nonsyndromic Autosomal Recessive Hearing Impairment[J].Otol Neurotol, 2017, 38:173-179.

    [9]

    JUNG J, SEO Y W, CHOI J Y, et al.Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene[J].Hear Res, 2016, 335:33-39.

    [10]

    ROSE J, MUSKETT J A, KING K A, et al.Hearing loss associated with enlarged vestibular aqueduct and zero or one mutant allele of SLC26A4[J].Laryngoscope, 2017, 127:E238-E243.

    [11]

    YUAN Y, GUO W, TANG J, et al.Molecular epidemiology and functional assessment of novel allelic variants of SLC26A4 in non-syndromic hearing loss patients with enlarged vestibular aqueduct in China[J].PLoS One, 2012, 7:e49984.

    [12]

    MÉNDEZ-VIDAL C, GONZÁLEZ-DEL POZO M, VELA-BOZA A, et al.Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa[J].Mol Vis, 2013, 19:2187-2195.

    [13]

    MAERKER T, VAN WIJK E, OVERLACK N, et al.A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells[J].Hum Mol Genet, 2008, 17:71-86.

    [14]

    EUDY J D, WESTON M D, YAO S, et al.Mutation of a gene encoding aprotein with extracellular m atrix motifs in Usher syndrome type IIa[J].Science, 1998, 280:1753-1757.

    [15]

    VYAS B, PURI R D, NAMBOODIRI N, et al.KCNQ1mutations associated with Jervell and lange-nielsen syndrome and autosomal recessive Romano-Ward syndrome in India-expanding the spectrum of long QT syndrome type 1[J].Am J Med Genet A, 2016, 170:1510-1519.

    [16]

    DUPONT M, JONES EM, XU M, et al.Investigating the disease association of USH2Ap.C759 Fvariant by leveraging large retinitispigmentosa cohort data[J].Ophthalmic Genet, 2018, 39:291-292.

    [17]

    NAKASHIMA K, KUSAKAWA I, DUFLOU J, et al.A left ventricular noncompaction in a patient with long QT syndrome caused by a KCNQ1 mutation:a case report[J].Heart Vessels, 2013, 28:126-129.

    [18]

    ARGENIO V, FRISSO G, PRECONE V, et al.DNA sequence capture and next-generation sequencing for the molecular diagnosis of genetic cardiomypathies[J].J Mol Diagn, 2014, 16:32-44.

    [19]

    PINGAULT V, ENTE D, DASTOT-LE MOAL F, et al.Review and update ofmutations causing Waardenburg syndrome[J].Hum Mutat, 2010, 31:391-406.

  • 加载中
计量
  • 文章访问数:  40
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2018-04-12

目录