Preliminary findings for metabolite profiles of papillary thyroid carcinoma and laryngeal squamous cell carcinoma
-
摘要: 目的: 阐明甲状腺乳头状癌(PTC)与喉鳞状细胞癌(LSCC)的代谢组学特征并探讨其异同点。方法: 联合应用气相色谱-飞行时间质谱和超高效液相色谱-飞行时间质谱技术,对57例PTC和33例LSCC患者的新鲜肿瘤组织及其邻近非肿瘤组织的代谢物进行检测,获取代谢谱。应用单维、多维统计学方法分析肿瘤组织与邻近非肿瘤组织之间的差异代谢产物以及相关的代谢通路。结果: PTC以及LSCC患者肿瘤组织与邻近非肿瘤组织分别存在46及41种差异代谢产物。两组患者共同的代谢特征主要表现在肿瘤组织中糖酵解、氨基酸代谢、一碳代谢及色氨酸代谢均较邻近非肿瘤组织明显增强。PTC与LSCC肿瘤组织中的嘌呤和嘧啶代谢产物较邻近非肿瘤组织增多,牛磺酸和次牛磺酸的代谢产物在PTC肿瘤组织中增多。脂肪酸代谢产物在PTC以及LSCC中又呈现共性的降低。结论: PTC与LSCC既具有肿瘤组织中糖酵解、氨基酸代谢、一碳代谢及色氨酸代谢明显增强的共性代谢特点,又具有各自独特的代谢特征,这些特征的揭示有助于阐明上述肿瘤的生物学特征。
-
关键词:
- 代谢组学 /
- 甲状腺肿瘤 /
- 喉鳞状细胞癌 /
- 气相色谱-飞行时间质谱 /
- 超高效液相色谱-飞行时间质谱
Abstract: Objective: To identify distinct metabolite profiles of papillary thyroid cancer (PTC) and laryngeal squamous cell carcinoma (LSCC).Method: Tumor and adjacent non-tumor specimens were collected from 57 PTC and 33 LSCC patients. Distinct metabolite profiles of tissues were examined using a combination of gas chromatography-time-of-flight mass spectrometry and ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. The data were analyzed with multivariate statistical analysis to compare the distinct metabolite profiles and related pathways of these three tumors.Result: A panel of 46 and 41 differentially expressed metabolites were identified in tumor and adjacent non-tumor tissues of PTC and LSCC, respectively. Increased glycolysis, amino acids metabolism, one carbon metabolism and tryptophan metabolism were found in these two types of tumor tissues compared to adjacent non tumor tissues. Purine and pyrimidine metabolism was significantly elevated in PTC and LSCC tumor tissues, while taurine and hypotaurine were only higher in PTC tumor tissues. The fatty acid metabolism was detected at lower level in both PTC and LSCC tumor tissue.Conclusion: PTC and LSCC tumor tissues not only have common metabolic signatures characterized by increased glycolysis, amino acids metabolism, one carbon metabolism and tryptophan metabolism, but also have distinct metabolic signatures. It is helpful to understand the nature of these two tumors. -
[1] SIEGEL R L, MILLER K D, JEMAL A.Cancer statistics, 2016[J].CA Cancer J Clin, 2016, 66:7-30.
[2] REINERS C, WEGSCHEIDER K, SCHICHA H, et al.Prevalence of thyroid disorders in the working population of Germany:ultrasonography screening in 96, 278unselected employees[J].Thyroid, 2004, 14:926-932.
[3] BRITO J P, YARUR A J, PROKOP L J, et al.Prevalence of thyroid cancer in multinodular goiter versus single nodule:a systematic review and meta-analysis[J].Thyroid, 2013, 23:449-455.
[4] HARACH H R, FRANSSILA K O, WASENIUS V M.Occult papillary carcinoma of the thyroid.A"normal"finding in Finland.A systematic autopsy study[J].Cancer, 1985, 56:531-538.
[5] CONZO G, AVENIA N, BELLASTELLA G, et al.The role of surgery in the current management of differentiated thyroid cancer[J].Endocrine, 2014, 47:380-388.
[6] QIU Y, CAI G, ZHOU B, et al.A distinct metabolic signature of human colorectal cancer with prognostic potential[J].Clin Cancer Res, 2014, 20:2136-2146.
[7] DEJA S, DAWISKIBA T, BALCERZAK W, et al.Follicular adenomas exhibit a unique metabolic profile.1 H NMR studies of thyroid lesions[J].PLoS One, 2013, 8:e84637.
[8] YAO Z, YIN P, SU D, et al.Serum metabolic profiling and features of papillary thyroid carcinoma and nodular goiter[J].Mol Biosyst, 2011, 7:2608-2614.
[9] TRIPATHI P, KAMARAJAN P, SOMASHEKAR B S, et al.Delineating metabolic signatures of head and neck squamous cell carcinoma:phospholipase A2, apotential therapeutic target[J].Int J Biochem Cell B, 2012, 44:1852-1861.
[10] SOMASHEKAR B S, KAMARAJAN P, DANCIU T, et al.Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues[J].J Proteome Res, 2011, 10:5232-5241.
[11] ERICKSON J W, CERIONE R A.Glutaminase:a hot spot for regulation of cancer cell metabolism[J]?Oncotarget, 2010, 1:734-740.
[12] GATENBY R A, GILLIES R J.Why do cancers have high aerobic glycolysis[J]?Nat Rev Cancer, 2004, 4:891-899.
[13] HU S, WANG J, JI E H, et al.Targeted Metabolomic Analysis of Head and Neck Cancer Cells Using High Performance Ion Chromatography Coupled with a Q Exactive HF Mass Spectrometer[J].Anal Chem, 2015, 87:6371-6379.
[14] GAMCSIK M P, KASIBHATLA M S, TEETER S D, et al.Glutathione levels in human tumors[J].Biomarkers, 2012, 17:671-691.
[15] LIU W, LE A, HANCOCK C, et al.Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC[J].Proc Natl Acad Sci U S A, 2012, 109:8983-8988.
[16] DE INGENIIS J, RATNIKOV B, RICHARDSON A D, et al.Functional specialization in proline biosynthesis of melanoma[J].PLoS One, 2012, 7:e45190.
[17] NILSSON R, JAIN M, MADHUSUDHAN N, et al.Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer[J].Nat Commun, 2014, 5:e3128.
[18] SON J, LYSSIOTIS C A, YING H, et al.Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway[J].Nature, 2013, 496:101-105.
[19] WEINBERG F, HAMANAKA R, WHEATON W W, et al.Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity[J].Proc Natl Acad Sci U S A, 2010, 107:8788-8793.
[20] HOLM E, HAGMULLER E, STAEDT U, et al.Substrate balances across colonic carcinomas in humans[J].Cancer Res, 1995, 55:1373-1378.
[21] ZHAI L, SPRANGER S, BINDER D C, et al.Molecular Pathways:Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy[J].Clin Cancer Res, 2015, 21:5427-5433.
[22] ZAMANAKOU M, GERMENIS A E, KARANIKAS V.Tumor immune escape mediated by indoleamine 2, 3-dioxygenase[J].Immunol Lett, 2007, 111:69-75.
[23] OPITZ C A, LITZENBURGER U M, SAHM F, et al.An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor[J].Nature, 2011, 478:197-203.
[24] MORETTI S, MENICALI E, VOCE P, et al.Indoleamine2, 3-dioxygenase 1 (IDO1) is up-regulated in thyroid carcinoma and drives the development of an immunosuppressant tumor microenvironment[J].J Clin Endocr Metab, 2014, 99:e832-840.
[25] SHIN J M, KAMARAJAN P, FENNO J C, et al.Metabolomics of Head and Neck Cancer:A Mini-Review[J].Front Physiol, 2016, 7:e26.
[26] BATHEN T F, JENSEN L R, SITTER B, et al.MRdetermined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status[J].Breast Cancer Res, 2007, 104:181-189.
[27] TESSEM M B, SELNAES K M, SJURSEN W, et al.Discrimination of patients with microsatellite instability colon cancer using 1H HR MAS MR spectroscopy and chemometric analysis[J].J Proteome Res, 2010, 9:3664-3670.
[28] EL AGOUZA I M, EISSA S S, EL HOUSEINI M M, et al.Taurine:a novel tumor marker for enhanced detection of breast cancer among female patients[J].Angiogenesis, 2011, 14:321-330.
[29] LIN J, MANSON J E, SELHUB J, et al.Plasma cysteinylglycine levels and breast cancer risk in women[J].Cancer Res, 2007, 67:11123-11127.
[30] SADZUKA Y, MATSUURA M, SONOBE T.The effect of taurine, a novel biochemical modulator, on the antitumor activity of doxorubicin[J].Biol Pharm Bull, 2009, 32:1584-1587.
[31] DAIGELER A, CHROMIK A M, GEISLER A, et al.Synergistic apoptotic effects of taurolidine and TRAIL on squamous carcinoma cells of the esophagus[J].Int J Oncol, 2008, 32:1205-1220.
[32] XU Y, ZHENG X, QIU Y, et al.Distinct Metabolomic Profiles of Papillary Thyroid Carcinoma and Benign Thyroid Adenoma[J].J Proteome Res, 2015, 14:3315-3321.
[33] KUHAJDA F P.Fatty-acid synthase and human cancer:new perspectives on its role in tumor biology[J].Nutrition, 2000, 16:202-208.
计量
- 文章访问数: 117
- PDF下载数: 72
- 施引文献: 0